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Heme Oxygenase-1 in Cardiovascular Diseases:
Molecular Mechanisms and Clinical Perspectives

Chao-Yung Wang, MD; Lee-Young Chau', PhD

Heme oxygenase (HO) catalyzes the rate-limiting step in
the oxidative degradation of cellular heme that liberates iron,
carbon monoxide (CO), and biliverdin. Two distinct HO iso-
forms have been identified in mammalian system. Compared
to HO-2, which is constitutively expressed, HO-1 is a stress-
responsive protein that is highly induced by many agents,
including cytokines, endotoxin, heavy metals, nitric oxide and
its own substrate heme. In addition to its well-defined role in
heme catabolism and erythrocyte turnover, HO-1 also plays an
important function in various physiological and pathophysio-
logical states associated with cellular stress. Over the past
decade, compelling evidence has revealed that the induction of
HO-1 represents an important defensive mechanism against
further oxidative injury in tissues and cells following various
insults; this occurs by virtue of the anti-inflammatory and
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antioxidant capacities of CO, biliverdin, and the subsequent metabolite of biliverdin, biliru-
bin. In line with the findings from the basic research, numerous studies have supported the
importance of HO-1 in various clinical diseases, including coronary artery disease, cardiac
hypertrophy, diabetes mellitus, ischemic/reperfusion injury, atherosclerosis and cancer. This
review provides an overview on the regulation and function of HO-1, ranging from the mol-
ecular mechanisms involved to various clinical perspectives. Specifically, there is a focus on
the enzyme’s role in various cardiovascular diseases. (Chang Gung Med J 2010,33:13-24)
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Heme oxygenase-1 (HO-1) was initially identified
as an enzyme in microsomes with the ability to
degrade heme to bilirubin in 1968." It was described
as a new member of the cytochrome p450 family and
later found to be a rapidly and transiently inducible
mono-oxygenase. At that time, studies of HO
focused on its function in hemoglobin turnover, the
enzyme’s relationship with cytochrome p450 and

drug metabolism. In 1986, a second and constitutive-
ly expressed form of HO (HO-2) was identified."”
HO-2 is abundant in testes, brain, liver and vascula-
ture, suggesting that HO may have broader roles
other than just hemoglobin degradation. Meanwhile,
carbon monoxide (CO), which is generated during
the process of heme degradation and originally
thought to be a toxic gas, was suggested to have
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important cell signaling properties. After the initial
report in 1993 showing that CO served as a signaling
molecule,” CO was implicated in a wide range of
cellular responses and physiological/pathophysiolog-
ical states, which stretch well beyond the initial
expectations. Moreover, bilirubin, which is also a
byproduct of heme degradation, was found to have
important anti-oxidant effects in 1987.% In light of
these findings, the HO system has attracted consider-
able interest due to it’s various roles, extending from
heme catabolism to cytoprotective defense mecha-
nisms in response to various cellular stresses and dis-
eases. In this review, we provide a comprehensive
overview on the molecular mechanisms underlying
the regulation and function of HO-1 and its clinical
implications. In addition, the therapeutic potential of
modulating HO-1 activity in terms of clinical appli-
cations will be discussed.

HO-1 gene identification

Human erythrocytes live for about 120 days and
aged erythrocytes undergo plasma membrane
changes that render them susceptible to recognition
for phagocytosis in the spleen and liver.”” The reticu-
loendothelial system, which is composed of
macrophages, plays a key role in the recycling of the
senescent erythrocytes and the release of important
breakdown products. The heme of the hemoglobin is
broken down into iron, CO and biliverdin. The
biliverdin is subsequently reduced by biliverdin
reductase to bilirubin, which is then bound to albu-
min, conjugated in the liver, and excreted into the
gut. The iron is transferred by transferrin and recy-
cled. In 1968, hemoglobin-heme was first noted to be
enzymatically converted to bilirubin by the microso-
mal fraction from liver, spleen or kidney." This
activity is highest in the spleen and can be inhibited
by CO. Since this enzymatic activity requires
NADPH and oxygen and is strongly inhibited by
CO, which is a typical feature of microsomal mixed
function oxidases, this enzyme was termed HO. In
1985, using antibody screening, a rat HO cDNA cod-
ing for 289 amino acids was cloned and later desig-
nated as HO-1. As HO is a microsomal enzyme, it
needs to be inserted into the endoplasmic reticulum
posttranslationally. The amino acid sequence analy-
sis has revealed that a hydrophobic segment at the
carboxyl terminus is essential for HO anchoring to
the membrane.®
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A genetically distinct HO isozyme (HO-2) was
subsequently identified.” Compared to HO-2, which
is constitutively expressed in various tissues and
cells, HO-1 is highly induced by many factors,
including heavy metals, endotoxin, cytokines, heme,
nitric oxide, hypoxia, and UV irradiation (Fig. 1).
HO-1 expression is highest in the spleen, reticuloen-
dothelial cells of the liver and bone marrow, which
are the responsible organs for degrading senescent
red blood cells.” In other tissues which are not
directly responsible for the hemoglobin metabolism,
the basal expression of HO-1 is very low but can be
rapidly induced upon stimulation. The finding that a
vast range of stimuli can induce HO-1 indicates that
HO-1 expression is subjected to regulation by many
cellular signaling pathways through the multiple
response elements present in HO-1 gene promoter.

HO deficiency

Mice with a HO-1 null mutation have been
shown to develop anemia associated with hepatic
and renal iron overload and this contributes to the
oxidative tissue injury and chronic inflammation.®
Moreover, HO-1 deficient mice develop right ven-
tricular infarction after chronic hypoxia exposure and
are more susceptible to ischemic and reperfusion
injury.”® The first human case of HO-1 deficiency
has also been reported."” This patient suffered per-
sistent hemolytic anemia and an abnormal coagula-
tion/fibrinolysis system, which were associated with
elevated thrombomodulin and von Willebrand factor,
indicating persistent endothelial damage. Likewise,
studies on HO-2 deficient mice revealed that these
animals exhibit hypoxemia and hypertrophy of the
pulmonary venous myocardium and are more sus-
ceptible to hyperoxic lung damage, which is associ-
ated with increased expression of HO-1."""» These
findings provide strong evidence to support that HO
has important functions in normal physiology and
pathophysiology, especially with regard to the car-
diovascular system.

Regulation of HO-1 expression

The mitogen-activated protein kinase (MAPK)-
activated signaling pathway was the first recognized
as able to mediate the induction of HO-1 by extracel-
lular stimuli.®*" MAPKs belong to evolutionary
conserved serine/threonine protein kinases that regu-
late multiple cellular functions including prolifera-
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Fig. 1 A diagram of the HO-1 signaling pathways and it’s various effects. HO-1 expression is highly induced by a variety of stim-
uli, including cytokines, oxidants, endotoxin, hypoxia, nitric oxide, and pharmacological agents, such as statins, via various distinct
signaling and transcriptional activation pathways. HO-1 catalyzes oxidative degradation of cellular heme to release free iron, carbon
monoxide and biliverdin, with the latter being subsequently converted to bilirubin by biliverdin reductase. Induction of HO-1 con-
fers protection within the cardiovascular system via the diverse effects of carbon monoxide and bilirubin on vascular cells, car-
diomyocytes and macrophages. The HO-1 protein is subjected to degradation via the ubiquitin-proteasome system. Abbreviations
used: CO: carbon monoxide; MAPK: mitogen-activated protein kinase; cGMP: cyclic guanosine monophosphate; PI3K/AKT: phos-
phatidylinositol-3-kinase/AKT; PKC: protein kinase C; TGF-f: transforming growth factor beta; IL-10: interleukin 10; PDGF:

platelet-derived growth factor.

tion, apoptosis, differentiation and environmental
stimuli responses. The MAPKs are composed of
three families, the extracellular signal regulated
kinases (ERK1/2), the c-Jun NH,-terminal kinases
(JNK), and the p38 MAPKs. Each family consists of
several functionally related kinases with distinct
activities associated with phosphorylation of their
specific downstream targets and transcriptional fac-
tors." These diverse effects highlight the complexity
of the MAPKSs signaling that is implicated in the
interaction between extracellular stimuli and tran-
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scriptional activation of HO-1 gene. In this context,
the molecular details of how the MARKSs signaling
cascades transduce and lead to the nuclear HO-1
gene transcription are not yet fully dissected. The
phosphatidylinositol 3-kinase (PI3K)/Akt signaling
pathway is also involved in HO-1 regulation."*'”
PI3K/Akt can be activated through many growth fac-
tors and cytotoxic stimuli. Akt can also directly
phosphorylate HO-1 at Ser-188 and modulate its
activity."y Moreover, other signaling molecules, such
as protein kinase C and tyrosine kinase, are also able



to influence HO-1 expression."*?" Given the com-
plex features of the cell signals and diverse extracel-
lular stimuli involved in the regulation of HO-1 gene
expression (Fig. 1), it is envisaged that multiple
response elements and diverse transcription factors
are involved in HO-1 gene transcriptional activation
across various cellular contexts and different cell
types. The human HO-1 gene promoter sequence
encompasses more than 10 kb and contains a number
of regulatory cis-elements, including stress-respon-
sive element, heat shock element, hypoxia respon-
sive element, metal responsive elements, negative
regulatory element, cadmium responsive element,
CAAT/enhancer binding protein binding site and NF-
kB binding site.*** Numerous studies have revealed
the involvement of various transcriptional factors,
including AP-1, Nrf2, Bachl, hypoxia-inducible fac-
tor-1 (HIF-1) and ATF-2, in the regulation of HO-1
gene transcription.?”

In addition to the transcriptional regulation, a
recent study from our group also showed that HO-1
is subjected to post-translational regulation by the
ubiquitin-proteasome system through an ER-associ-
ated degradation pathway.® Proteasome inhibition
significantly decreases HO-1 protein degradation.
Increased HO-1 expression by MG-132, a protea-
some inhibitor, has been shown to protect astrocytes
from heme-mediated oxidative injury.®® Whether the
ubiquitin-proteasome-mediated HO-1 protein
turnover is altered in various cellular circumstances
is currently unclear. Delineating the detailed mecha-
nisms regulating HO-1 ubiquitination thus is neces-
sary for a further understanding of the physiological
significance of HO-1 turnover.

HO-1 in vascular system

Numerous studies have supported the multi-
functional roles of HO-1 in the vascular system,
including vascular tone regulation, anti-smooth mus-
cle proliferation, anti-endothelial apoptosis, and
angiogenesis.**® The effects of HO-1 appear to be
mediated in large part by the actions of its reaction
byproducts, CO and bilirubin. In the vascular system,
nitric oxide (NO) released from endothelial cells in
response to shear stress and activation by various
factors is well established as a major signaling mole-
cule that activates soluble guanylate cyclase (sGC),
which in turn increases intracellular cGMP and leads
to vasodilatation, inhibition of smooth muscle cell
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proliferation, anti-thrombogenic effects, and anti-
inflammatory responses in vascular system.®”
Compared to NO, which is a free radical with one
unpaired electron, CO is a relatively stable gas.
However, both gases share some similar functions.
CO is also able to promote vasodilatation through
activating soluble guanylate cyclase, although it has
a lower efficacy than NO.®” CO produced from
hypoxia-stimulated rat aortic smooth muscle cells
can decrease the expression of endothelin-1 and
platelet-derived growth factor-B in endothelial
cells.®” Moreover, CO can affect K* channel activity
in smooth muscle and regulate its relaxation and con-
traction.®® CO has also been shown to inhibit vascu-
lar smooth muscle cell proliferation through a
cGMP-dependent pathway.“® On the other hand,
bilirubin can exert anti-proliferative effect on smooth
muscle cells through its antioxidant property.® In
view of the profound effects of CO and bilirubin on
vascular cells, it is envisaged that HO-1 has a signifi-
cant impact on the development of atherosclerosis,
which represents a chronic pathological process
associated with multiple oxidative stress of the vas-
culature. Studies from several laboratories, including
our group, have demonstrated that HO-1 exerts
potent anti-atherogenic effects via multiple path-
ways.®3? HO-1 overexpression in vasculature
reduces iron deposition in atherosclerotic lesions.
Moreover, the inhibitory effects of CO and bilirubin
on monocyte transmigration through endothelium,
smooth muscle cell proliferation and inflammatory
gene expression appear to contribute to various
degrees to the protective effect of HO-1 in athero-
sclerosis. Likewise, HO-1 overexpression in arterial
walls reduces neointima formation subsequent to
vascular injury through the anti-proliferative effect
of CO and bilirubin and the anti-thrombotic and anti-
inflammatory effects of CO.®**%

The first link between HO-1 and angiogenesis
was demonstrated in a study showing that overex-
pression of HO-1 in endothelial cells enhanced cell
proliferation.®” The increased proliferation is associ-
ated with cell cycle progression with a reduction in
p21 and p27 in the endothelial cells.“” HO-1 has also
been shown to induce VEGF synthesis and func-
tion.“#? Inhibition of HO-1 activity by tin protopor-
phyrin prevents VEGF synthesis induced by hypoxia
in smooth muscle. Conversely, VEGF induces HO-1
expression.“? Inhibition of HO-1 activity by tin pro-
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toporphyrin abolishes VEGF-induced endothelial
cells proliferation and tube formation, indicating the
close interaction between VEGF and HO-1.“Y Tumor
infiltrating macrophages have been found to enhance
HO-1 expression and accentuated angiogenesis in
human gliomas and melanoma.“*> Nevertheless,
inflammation-induced angiogenesis can be attenuat-
ed by increasing HO-1 activity in macrophages,*”
which suggests that HO-1 has a dual effect on angio-
genesis. It is well documented that under hypoxia
conditions the transcriptional factor HIF-1a is highly
induced and mediates the expression of many hypox-
ia-responsive genes, including VEGF. The hypoxia
response element is present in the HO-1 gene pro-
moter. HO-1 expression has been shown to be
induced by hypoxia in vascular cells via HIF-1-
mediated gene transcription.“? It is conceivable that
the interplays between HO-1 and VEGF induced by
hypoxia might augment the angiogenic response in
ischemic tissues.

In addition to VEGF, stromal cell-derived fac-
tor-1 (SDF-1) has also been shown to play an impor-
tant role in the new vessel formation in adult tissues.
SDF-1 is a chemokine and reacts with a single high-
affinity receptor, CXCR4. SDF-1 controls the traf-
ficking of the primitive CXCR4*-hematopoietic cells
into and away from the bone marrow. Moreover, it
promotes the migration of bone marrow-derived
CXCR4*-endothelial progenitor cells as well as
hematopoietic cells to local tissues, where they par-
ticipate in neovascularization.*” SDF-1 knockout
mice are embryonically lethal because of abnormal
vascular development.“® SDF-1 increases HO-1
expression, which in turn mediates SDF-1-induced
angiogenic response of endothelial cells.*” HO-1
deficiency in endothelial cells causes defective
angiogenesis upon SDF-1 stimulation. Our group
recently showed that forced expression of HO-1 in
the ischemic heart via adeno-associated virus-medi-
ated gene transduction can induce VEGF and SDF-1
concurrently, which results in the recruitment of
bone marrow-derived c-kit*-stem cells to the infarct-
ed myocardium and increases myocardial angiogene-
sis.®” Concomitant administration of both VEGF and
SDF-1 neutralizing antibodies significantly attenuat-
ed HO-1-mediated neovascularization and protection
during myocardial infarction, highlighting the coop-
erative roles of both factors in HO-1 mediated angio-
genesis and protection.®” The impact of HO-1 on
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SDF-1 expression and bone marrow-derived stem
cell mobilization has also been observed in a hind-
limb ischemia model by others.“" In line with these
findings, more recently, our group also reported that
an increase in systemic HO-1 expression enhanced
reendothelialization after vascular injury through
promoting the mobilization of endothelial progenitor
cells from bone marrow.?

HO-1 in the heart

HO-1 overexpression protects the myocardium
from ischemic and reperfusion injury.“¥ Several lines
of evidence suggest that the anti-inflammatory prop-
erties of CO and the anti-oxidant effects of bilirubin
mediate the myocardial protection induced by HO-1.
In a rat model, CO or biliverdin alone did not alter
the survival of heart grafts, while a combined thera-
py was able to increase the survival from 0% to
80%.°" An earlier study from our group demonstrat-
ed that HO-1 has a role in the myocardial remodeling
response.® Cardiac hypertrophy induced by
angiotensin II can be significantly suppressed by
HO-1 overexpression either by cobalt protoporphyrin
or HO-1 adenovirus. Our results support the hypoth-
esis that bilirubin suppresses angiotensin II-induced
cardiac hypertrophy via a reduction in reactive oxy-
gen species production. Others have also shown that
antioxidants are effective at preventing cardiomy-
ocyte hypertrophy and HO-1 induction attenuates
cardiac hypertrophy in stroke-prone SHR rats.®®
Reactive oxygen species are implicated in various
pathological myocardial dysfunction and, therefore,
the attenuation of reactive oxygen species by HO-1
is considered to be a potential therapeutic target in
myocardial diseases.

HO-1 in macrophages

Our group has found that HO-1 expression is
prominent in the endothelium and macrophages of
human and mouse atherosclerotic vessels.®” HO-1
expression is induced in macrophages after treatment
with oxidized low density lipoprotein.®” Another
group has also shown that HO-1 is critically involved
in macrophage activation toward the M2 pheno-
type,®® which is an anti-inflammatory phenotype.
Moreover, a study has shown that HO-1 null
macrophages exhibit increased levels of reactive
oxygen species, have higher proinflammatory
cytokines and undergo greater foam cell formation



partly due to the increase in scavenger receptor A
expression.®” Further evidence also supports the
multiple functions of HO-1 in macrophages. Upon
lipopolysaccharide stimulation, HO-1 is recruited to
the caveolae by a p38 MAPK-dependent mechanism
and this inhibits proinflammatory signaling.® This
effect is through suppression of the interaction of
caveoline-1 with toll-like receptor 4, which is the
principle membrane receptor for lipopolysaccharide.
We have shown that the potent anti-inflammatory
cytokine interleukin-10 (IL-10) induces expression
of HO-1 in a p38 MAPK-dependent mechanism in
macrophages.©®” IL-10- mediated protection against
LPS-induced septic shock in mice is significantly
attenuated by an inhibitor of HO-1, illustrating the
important role of HO-1 as a downstream effector of
IL-10. As HO-1 has diverse effects that affect
inflammation, apoptosis, hypoxia and angiogenesis,
it is not surprising to find that HO-1 has clinical rele-
vance in various cardiovascular diseases.

Clinical perspectives of HO-1 in cardiovascular
diseases
Coronary artery disease

The direct evidence of the clinical significance
of HO-1 in coronary artery disease comes from a
study demonstrating that HO-1 expression and activ-
ity are associated with atherosclerosis. Human arteri-
al samples were obtained from normal subjects dur-
ing surgery for vascular trauma or from patients with
atherosclerotic diseases. Interestingly, VEGF protein
and HO-1 activity, as measured by bilirubin release
per mg of aorta, were only present in the advanced
atherosclerotic lesions.®® Furthermore, leukocytes
from patients with coronary artery diseases also
express HO-1 and the level of HO-1 expression was
correlated with the severity of their disease, with
patients suffering from acute myocardial infarction
being highest, followed by patients with unstable
angina.® It has also be shown that among patients
with documented coronary artery disease, HO-1 level
is correlated with plaque burdens.

In terms of genetic studies the GT dinucleotide
repeats in the promoter region of the human HO-1
gene have been shown to modulate HO-1 gene tran-
scription.®* The number of the (GT), repeat is high-
ly polymorphic and studies from our group and oth-
ers have demonstrated that promoters containing
longer (GT), repeats show lower transcriptional
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activity. Microsatellite polymorphisms have been
reported to be associated with coronary restenosis
after balloon angioplasty, or stents implantation,
abdominal aortic aneurysm, and renal allografting.”
Shorter GT repeat in HO-1 gene promoter have been
associated with a lower inflammatory response and
reduced restenosis after balloon angioplasty. In addi-
tion, diabetic patients with longer (GT), repeats show
increased susceptibility to the coronary artery dis-
eases. Finally, a single nucleotide polymorphism,
T(-143)A, has been identified and the AA/TA+TT
variant was found to be associated with increased
hypertension in women.

Cerebrovascular disease

HO-1 is expressed in the human brain and is
associated with brain tumors and neurodegenerative
diseases. Following traumatic brain injury, an accu-
mulation of HO-1-positive microglia or macrophages
at the hemorrhagic lesion has been noted to be pre-
sent from 6 hours to 6 months.®® However, during
cerebral infarction, macroglia or macrophages with
HO-1 expression have been noted only within focal
hemorrhages.® It is not known if these HO-1-posi-
tive cells are a response to the local hemorrhage or
whether they are able to exert a protective role dur-
ing brain injury after trauma or stroke. The clinical
relevance of HO-1 in cerebrovascular events is con-
troversial. In patients with advanced peripheral artery
diseases, HO-1 promoter microsatellite polymor-
phism do not seem to be correlated with the cere-
brovascular event, unlike coronary events.® A fol-
low-up study of 472 patients with advanced periph-
eral artery diseases for 21 months has shown that
persons with short (GT)n repeats have a lower haz-
ard ratio for coronary events;” however, no signifi-
cant difference was found for cerebrovascular events
and mortality.”? Nonetheless, in cerebral aneurysms,
the HO-1 promoter polymorphism was shown to cor-
relate with an increased risk.””

HO-1 and therapeutic agents

The 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase inhibitors are therapeutic
agents for the treatment of hypercholesterolemia.
The Scandinavian Simvastatin Survival Study (45),
the West of Scotland Coronary Prevention Study
(WOSCOPS), the Air Force/Texas Coronary
Atherosclerosis Prevention Study (AFCAPS/
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TexCAPS) and the Heart Protection Study (HPS),
have demonstrated the effects of statins in the prima-
ry and secondary prevention of cardiovascular dis-
ease. Statins also have cholesterol-independent or
pleiotropic effects.” By inhibiting the conversion of
HMG-CoA to R-mevalonic acid, statins prevent the
synthesis of isoprenoids, which are the precursors of
cholesterol biosynthesis. These intermediates serve
as important lipid attachments for the post-transla-
tional modification of proteins, such as Ras, Rho and
Rac. Given that these isoprenylated proteins control
diverse cellular functions, recent studies have sug-
gested that statins may have immunomodulation,
anti-inflammatory and anti-senescent effects.”7>
Simvastatin has been shown to induce HO-1 in
human smooth muscle cells.” This effect was noted
only in smooth muscle cells but not in endothelial
cells or macrophages. Blocking HO-1 activity by
zinc protoporphyrin or a small interfering RNA
decreased the anti-inflammatory effect of simvastatin
through inhibition of nitric oxide production, NF-xB
activation and p21. The Akt and p38 MAPK path-
ways appeared to mediate the effect of simvastatin
on HO-1 induction. This finding suggests that statins
may provide a new therapeutic possibility for the
activation of HO-1. Moreover, fenofibrate, rosiglita-
zone and troglitazone, which are ligands of the per-
oxisome proliferators-activated receptors (PPAR),
have been shown to increase the expression of HO-1
in smooth muscle.”” These PPAR ligands have been
shown to potently inhibit the development of athero-
sclerosis and coronary restenosis after stent implan-

Table 1. The Functions of HO-1 Implicated in Cardiovascular Diseases

tation. Evidence has suggested that these effects are
not only due to insulin sensitization but also are
related to their anti-inflammatory effects.”™ It has
been shown that two PPAR responsive elements are
present in the HO-1 promoter and both PPARa and
PPARY can directly regulate HO-1 gene transcrip-
tion.”” The HO-1 promoter polymorphism critically
affects transcriptional activation activity by PPARa
or PPARY. Interestingly, aspirin also increases HO-1
protein level in a dose-dependent fashion in human
umbilical endothelial cells.” The nitric oxide syn-
thase blocker L-NAME is able to inhibit HO-1
induction by aspirin, suggesting a NO-dependent
pathway. Other pharmacological agents, such as cur-
cumin, resveratrol, cyclosporine, rapamycin and
probucol, have also been shown to induce HO-1.”
Nevertheless, the clinical applications of these agents
to augment HO-1 expression in the various disease
states remain to be established.

Conclusion

As summarized in Table 1, HO-1 exerts multi-
functional roles in the cardiovascular system and
modulates the development of various diseases. HO-
1 cooperates with its downstream products, CO and
bilirubin to exert diverse cellular protection effects
and provide potential disease therapeutic targets.
However, there are still gaps between the basic find-
ings and their clinical application. Currently, there is
no large-scale clinical study providing solid evidence
to prove the usefulness of HO-1 therapeutics in
patients, partly because of lacking specific HO-1

Disease setting Effect References
Atherosclerosis v Smooth muscle cell proliferation 33,34
v Inflammatory response 36,37,59
v Iron deposition 35
Neointimal hyperplasia A Reendothelialization 52
v Smooth muscle cell proliferation 33,34
v Inflammatory response 38
v Thrombosis 38
Limb ischemia A Neovascularization 51
Myocardial infarction v Cardiomyocyte death 8,9,53
v Inflammatory response 8,9,53
A Neovascularization 50
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activators. As both CO and bilirubin also play impor-
tant roles in cardiovascular protection, the potential
of these chemicals as clinical therapeutics versus
HO-1 are still unclear and needed to be dissected fur-
ther. A serum or plasma marker for HO-1 will be
important and useful addition in the future because it
would help with the clinical assessment of the role of
HO-1 in cardiovascular diseases. At present, there is
no specific and sensitive marker for HO-1 activity in
vivo. Clinical studies have primarily focused on the
genetic association of HO-1 and various diseases. It
will be important to delineate the pathophysiological
responses and activity of HO-1 in patients with car-
diovascular diseases of various severities, as HO-1 is
an inducible enzyme and its activity or function may
vary greatly in patients with different disease status.
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