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Nitric Oxide and Carbon Monoxide, Collaborative and
Competitive Regulators of Hypertension

Ching-Yin Lee, MD; Mao-Hsiung Yen, PhD

Blood pressure is one of the vital parameters of the body
that is normally maintained in homeostasis by a complex mul-
tifactorial mechanism mediating constriction or dilation of ves-
sels. Hypertension ensues when the responses to vasorelaxant
signals become inefficient or vascular tissues are injured by
inflammatory insults, leading to a decrease in arterial compli-
ance and patency. This pathologic condition is best exempli-
fied in atherosclerosis, one of the most common diseases
afflicting humans worldwide. It is now generally recognized
that nitric oxide (NO) and carbon monoxide (CO), two gaso-
transmitters synthesized by inducible NO synthase (iNOS) and
heme-oxygenase-1 (HO-1) respectively, play important roles in
the compensatory regulation of the blood pressure during the
development of hypertension. Nonetheless, much remains elu-
sive regarding how these two stress systems interact with each
other. Knowledge about their crosstalk will prove essential in the better understanding of the
mechanisms underlying the disease process as well as in the design of potential therapeutic
strategies. In this review, we provide an overview of the functions of NO and CO related to
cardiovascular health. By dissecting the current findings in the literature, we discuss possi-
ble theories about the dynamics and interplay of their actions. (Chang Gung Med J
2009;32:12-21)
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Hypertension is characterized by increased vascu-
lar contractility, a concomitant increase in

oxidative stress, enhanced vascular inflammation
and vascular remodeling.(1) There is ample evidence
showing that hypertension is associated with cardio-
vascular diseases, which affect more than one-forth
of the adult population worldwide.(2) Its pandemic
impact suggests the importance of a better under-
standing of the mechanisms underlying this patho-

logical condition. Much of our current knowledge on
hypertension have been generated from studies with
spontaneously hypertensive rats (SHR), our closest
genetic animal model of essential hypertension.(3,4) It
has been generally accepted that hypertension is
related to endothelial dysfunction in the peripheral,
coronary and renal circulations. For instance,
endothelium-dependent relaxation of isolated aortic
rings from SHR are impaired when compared to
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those from normotensive Wistar-Kyoto (WKY)
rats.(5) Under normal conditions, the endothelium
protects the structural integrity of the vascular wall
as well as promotes vasoconstriction or vasodilation
in response to various stimuli. Furthermore, it is
involved in inflammatory, thromolytic and coagulant
processes.(6) Two important mediators of the many
endothelial functions are nitric oxide (NO) and car-
bon monoxide (CO).(7) Indeed, it has become increas-
ingly clear that impaired regulation of the systems
synthesizing these two gasotransmittors upon induc-
tion by pathologic stress, namely inducible nitric
oxide synthase (iNOS) and heme oxygenase-1 (HO-
1), constitutes one of the pathogenic mechanisms of
hypertension. With growing interest and advancing
research endeavors, many excellent reviews on
iNOS/NO(8,9) and HO-1/CO(10,11) have become avail-
able in recent years. Yet, because these two fields
have evolved independently of each other, studies
generally have investigated the role of one pathway
or the other in the control of biological activities,
with little emphasis on the possible interactions
between these two closely related systems.(12) Hence,
the present review will focus on the interdependence
of NO and CO function during the development and
progression of hypertension.

Overview of NO in hypertension
Generated from a two-step oxidation of L-argi-

nine to L-citrulline,(13) NO is known to be an impor-
tant autocrine and paracrine signaling molecule in
the regulation of various cell functions, including
modulation of vasomotor tone(14) and cell adhesion to
the endothelium,(15) as well as inhibition of platelet
aggregation(16) and vascular smooth muscle cell pro-
liferation.(17) It is synthesized by three distinct iso-
forms of the nitric oxide synthases (NOS), which dif-
fer both in their structure and function.(18) Endothelial
NOS (eNOS or NOS III) and neuronal NOS (nNOS
or NOS I) are Ca2+ -dependent and constitutively
expressed. In contrast, under normal physiological
conditions, the expression of inducible NOS (iNOS
or NOS II) is minimal or absent.(19) However, this lat-
ter can be induced, independent of the Ca2+ concen-
trations, to very high levels by cytokines or other
proinflammatory agents during infection in most
types of vascular cells, including endothelial 
cells,(20) cardiac myocytes,(21) hepatocytes(22) and
macrophages.(23) NO is pleiotropic in nature: on one

hand, constitutive production of NO is critical for its
cytoprotective action on the cardiovascular system,
as exemplified in the case of defective eNOS.(24) On
the other hand, excessive or inappropriate NO output
by iNOS upon pathologic induction can be as delete-
rious as insufficient NO because of its cytotoxic
effects.(25) This harmful aspect of the enzyme is at
least partly contributed by a simultaneous production
of superoxide anions by iNOS that can scavenge NO
to form peroxynitrite. This uncoupled reaction is
favored in the presence of low concentrations of sub-
strate L-arginine or tetrahydrobiopterin (BH4), a key
cofactor of NOS deficient in SHR yet required for
the enzyme to dimerize and to produce NO instead
of superoxide.(26) Peroxynitrite is a potently damaging
oxidant that could create a considerable amount of
oxidative stress and injury to the vascular bed.
Furthermore, it mediates reactions such as protein
nitration, DNA single-strand breakage and guanidine
nitration that are both cytotoxic and mutagenic.(27)

Therefore, it is believed that overproduction of
superoxide in SHR may lead to the development of
hypertension through decreased availability of NO
and chronic damage to the cardiovascular system.(28)

Indeed, superoxide anion levels in SHR increase in
an age-dependent manner in concordance with the
development of elevated blood pressure.(29) Evidence
for the damaging role played by superoxide is con-
versely provided by the protective effect of superox-
ide dismutase delivered to a rat model of angiotensin
II-induced hypertension.(30) Consistent with these
findings, our laboratory has demonstrated that
exogenous BH4 significantly improved acetyl-
choline-induced relaxation, suppressed iNOS expres-
sion and reduced NO, peroxynitrite and superoxide
formation, altogether attenuating the progression of
hypertension.(31) Therefore, we proposed that the rela-
tive deficiency of BH4 may be responsible, at least in
part, for the pathology in SHR.(31) While it can be
concluded that iNOS uncoupling contributes to
increased oxidative stress, iNOS might also decrease
intracellular BH4 and L-arginine availability to
eNOS, thereby leading to an impairment in eNOS-
derived NO production.(32) In this regard, we postulat-
ed that the decline of eNOS activity and/or expres-
sion may contribute to the development of hyperten-
sion, whereas the increase of iNOS expression is a
consequence of the pathological state associated with
the vascular insult,(33) as observed in SHR models.(34)
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The relative contributions of iNOS uncoupling ver-
sus iNOS-dependent eNOS uncoupling merit further
investigation. All in all, when the pro-oxidant nature
of NO takes over its vasodilator function, iNOS may
be considered as a detrimental player in the disease
pathogenesis. Indeed, it has been shown that iNOS
deficiency protects the heart from ventricular hyper-
trophy and congestive heart failure resulting from
systolic overload.(35) Similarly, studies have shown
that iNOS knockout mildly reduced infarct-induced
mortality, improved ventricular function, and low-
ered myocardial nitrotyrosine and plasma nitrate
content, as well as decreased programmed cell death
during both the acute and chronic phases of myocar-
dial infarction.(36-38)

Overview of CO in hypertension
The major cellular source of CO is heme oxyge-

nase (HO), a ubiquitously expressed protein that cat-
alyzes the oxidative degradation of heme to
biliverdin, CO and iron, with biliverdin subsequently
converted to bilirubin by biliverdin reductase.(39) HO
exists in 2 major isoforms, HO-1 and HO-2, which
are products of different genes. McCoubrey et al.
also cloned a putative third HO isozyme sharing a
~90% amino acid sequence homology to HO-2.(40)

While HO-2 and HO-3 are constitutively expressed
and produce most of the endogenous CO under nor-
mal conditions, the expression level of HO-1, a.k.a.
the stress protein HSP32, often falls below the
detectable level on reverse transcriptase-polymerase
chain reaction (RT-PCR) or Western blot. (41,42)

However, like iNOS, HO-1 is highly inducible by a
vast array of stimuli, including oxidative stress, heat
shock, ultraviolet radiation, ischemia-reperfusion
(I/R), heavy metals, lipopolysaccharide, cytokines,
and NO and its substrate heme.(43) It is also found
highly expressed in the endothelium and foam cells
of atherosclerotic lesions in both humans and ani-
mals.(44) Biliverdin and bilirubin, two products of
HO-1, have been long recognized as potent antioxi-
dants.(45) They can efficiently scavenge peroxy radi-
cals and inhibit lipid peroxidation.(46,47) Hence, HO-1
has emerged as an important mediator of antioxidant
and tissue-protective actions.(48) Consistent with this
premise, it has been shown that hearts from HO-1
knockout mice have greater susceptibility to I/R
injury.(49) Conversely, cardiac-specific overexpression
of HO-1 leads to attenuated myocardial injury after

I/R in transgenic mice.(50) Observations from these
animal studies were convincingly supported by the
first human case of HO-1 deficiency, which dis-
played early atherosclerotic changes in the vascula-
ture as reflected by the presence of fatty streaks and
fibrous plaque.(51,52) Notably, an upregulated HO-1
system not only increases the production of
biliverdin and bilirubin, but also normalizes the
endogenous CO concentration. CO was originally
considered a toxic metabolic waste product. The
cytoprotective function of CO was unveiled in 1984
when McGrath and Smith demonstrated the relax-
ation of rat coronary artery in response to exogenous
CO.(53) Subsequently, different research groups have
provided evidence of the ability of CO to relax vas-
cular tone in the heart similar to that of NO. This dis-
covery is of significance because the HO-1/CO sys-
tem is believed to constitute a novel cardiac defense
mechanism(54,55) protecting cells and tissues when
they are exposed to different stress stimuli. For
instance, CO perfusion and pretreatment with hemin
to promote HO activity were found to suppress in a
concentration-dependent manner the phenylephrine-
induced vasoconstriction in rat tail artery; upon with-
drawal of CO, the vascular contractility was recov-
ered.(56) The vasorelaxant effect of endogenous CO
was concomitantly revealed in one study when HO
activity was inhibited with zinc protoporphyrin-IX,
which increased the perfusion pressure in isolated rat
liver.(57) In another study, inhibition of HO decreased
the diameter in resistance vessels.(58)

Although the precise physiological role of HO-1
in hypertension remains to be further elucidated, the
suggested vasoprotective actions of HO-1 are likely
conferred by its anti-inflammatory and antioxidant
properties that protect the cardiovascular tissues
against both primary and secondary damage inflicted
on cells, as well as by its vasodilator abilities that
can prevent the progress of abnormal vascular con-
tractility and vascular remodeling. Hence, abnormal
functions of HO-1 have been linked to the pathogen-
esis and maintenance of hypertension.(59) This con-
cept helps to explain the reduced expression of HO-1
detected in the aorta and pulmonary, mesenteric and
tail arteries of young SHRs in comparison with that
in normotensive WKY rats of all ages. On the other
hand, overexpression of HO-1 or administration of
CO reversed the blood pressure development in
young SHRs and other animal models of hyperten-
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sion.(60-63)

Crosstalk between iNOS and HO-1 in hyperten-
sion

The physiological effects of NO and CO should
be considered in an integrated environment. The
potential interactions between them are of special
interest in this regard because they have similar car-
diovascular functions sharing control of vascular
contractility and both are generated in the vascular
wall.(64) Most importantly, for both the iNOS/NO and
HO-1/CO systems, soluble guanylate cyclase (sGC)
is the common transduction mediator that dictates
the downstream signaling cascade in many cell
types.(65-68) The activation of sGC results in a transient
increase in cyclic guanosine 3, 5-monophosphate
(cGMP). One of the downstream targets of cGMP is
the cGMP-dependent protein kinase which, by phos-
phorylating regulators for calcium metabolism and
transport, promotes a decrease in intracellular calci-
um levels.(69-71) A drop in the intracellular calcium
concentration generally leads to relaxation in vascu-
lar smooth muscle cells.(72) Hence, dysfunction of this
sGC/cGMP pathway has been reported to lead to
hypertension.(73) For example, Kloss et al. have
demonstrated that both the function and expression
of sGC were significantly decreased in the aortas of
prehypertensive and old SHR when compared with
age-matched WKY rats.(74)

While it is possible that both iNOS and HO-1
independently contribute to the modulation of vascu-
lar functions via the respective NO- and CO-mediat-
ed sGC activation, the presence of another vasoac-
tive signaling factor likely influences the vascular
effects of each system. In fact, the modes of action of
these two systems and their regulations strongly sup-
port their interdependence that is subject to change
at different developmental stages of hypertension.
For example, Kajimura et al. have shown that CO
becomes a stimulatory modulator of sGC when the
tissue level of NO is low.(75) It was documented that
the effect of CO on cGMP production might be
ascribed, at least in part, to the displacement and
release of NO from its intracellular storage
pool(s).(76,77) Interestingly, we have also provided evi-
dence from our time-course study that the expression
of HO-1 appears to occur earlier than that of iNOS.(78)

Thus, while the up-regulation of HO-1 and iNOS
could serve, as distinct entities, to oppose the eleva-

tion of blood pressure during the development of
hypertension in SHR,(78) HO-1 may act by potentiat-
ing the activity of the iNOS/NO system, which is a
much more efficient activator of sGC.(79) Intriguingly,
the same author also reported that CO could be a
negative modulator inhibiting sGC activity when the
tissue NO level is high.(75,80) Maines has proposed a
few other possible forms of negative regulation of
NO production by HO-1, reflecting the hemoprotein
nature of NOS.(81) These include limited availability
of heme for NOS production,(81,82) an accelerated
turnover rate of NOS presented as an HO-1 substrate
of the P450 type,(81,83) and direct binding of CO to the
heme moiety of NOS leading to its inactivation.(81,84)

The mechanistic nature and the advantages of such
differential regulations mediated by HO-1 are
unknown. By controlling the NOS production,
Maines postulated that the HO-1 system would mod-
ulate the negative feedback regulation that the syn-
thase activity product exerts on its own produc-
tion.(81,85) As described above, NO could be both
hemodynamically beneficial and cytotoxic, depend-
ing on the rate of NO production and the chemical
fate of the NO produced.(86) Because iNOS is a signif-
icant source of oxidative stress, its negative roles as a
generator of maladaptative responses have been sug-
gested. In contrast, unlike the highly reactive NO,
which by itself is a free radical, CO is chemically
stable. Therefore, it is also tempting to postulate that
the inactivation of iNOS could represent a natural
compensatory mechanism of the HO-1 system work-
ing in concert with iNOS in response to hyperten-
sion. If this was true, it would seem that the end-
points of this feedback loop would be decreased NO
transformation to reduce oxidative stress and
increased CO production to perform NO-equivalent
signaling functions. Some interesting data sugges-
tively support this premise. Huang et al. have found
in a hippocampus model that expression of iNOS in
23-week-old SHR was about fourfold lower than that
in age-matched control rats and 4-week SHR rats
while HO-1 levels remained elevated.(87) Our labora-
tory has also provided data suggesting that the HO-
1/CO system takes over and acts as a major modula-
tor for the maintenance and restoration of blood pres-
sure when the iNOS/NO system is suppressed during
the development of hypertension.(78) In the same line
of thought, Sammut et al. demonstrated that CO is a
major contributor to the regulation of vascular tone
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in aortas expressing high levels of HO-1.(88) In certain
circumstances, however, these very same comple-
mentary actions that promote a reduction in blood
pressure could be counterbalanced by the ability of
CO to inhibit both the synthesis and vascular
response to NO. Thus, the relative importance and
role that CO plays in modulating the vascular tone
with respect to NO will likely vary depending on the
underlying physiological state and the amount of CO
being generated.(89)

Conversely, diverse NO releasing agents were
found to possess the ability to modulate HO-1 pro-
tein expression and activity. For example, NO has
been reported to avidly induce HO-1 expression and
CO production in different cell types.(90-95) It was sug-
gested that mitogen-activated protein kinases
(MAPK) ERK and p38 pathways are underlying
mechanisms by which NO regulates HO-1 gene
expression.(96-98) That NO is the initial element in the
cascade of events leading to HO-1 up-regulation was
ascertained by the use of hydroxocobalamin, an NO
scavenger that considerably decreased HO-1 activa-
tion by NO donors.(91,99) Consistent with this finding,
it has been shown that the dilation of pial arterioles
in piglets by CO could be blocked by N-nitro-L-argi-
nine, an inhibitor of NO production; sodium nitro-
prusside, an NO donor, reversed this tempered
vasodilation.(100) It was thus speculated that NO is in
fact a permissive factor for the vascular effect of
CO.(100,101) Of note, peroxynitrite itself produces a con-
centration-dependent increase in HO-1 protein
expression.(102) The regulation of HO-1 gene expres-
sion by NO may represent an elegant example of pre-
conditioning wherein exposure of tissues to oxidative
stress results in an upregulation of endogenous
defensive proteins that confer resistance to the subse-
quent insults. Our recent studies on alpha-lipoic acid,
a natural antioxidant reported to protect against
oxidative injury in various disease processes, gave an
example of how HO-1 expression could be induced
through the pro-oxidative production of reactive
species followed by subsequent activation of the
p44/42 MAPK pathway in vascular smooth muscle
cells.(103) Alternatively, given the highly reactive and
short-lived nature of NO in comparison with the
structural stabilities in CO, it was also postulated
that, in addition to regulating biological processes
through its rapid pharmacological action, NO exerts
delayed and long-lasting effects via induction of the

HO-1/CO/bilirubin pathway.(104)

Conclusions
Although further investigation is required to

clarify the precise action of these two gaseous mole-
cules, we believe that NO and CO function interde-
pendently, each dynamically influencing the other to
regulate the signal transduction related to vasodila-
tion processes. In certain physiological or pathophys-
iological situations, it is possible that iNOS and HO-
1 co-operate to maintain cellular homeostasis upon
exposure to oxidative stress. Under other conditions,
however, one enzymatic pathway may counter-regu-
late, compensate or prevail over the other. The inter-
play and crosstalk between CO and NO, being syner-
gistic or antagonistic, provides an integrated mecha-
nism for the fine-tuning of their vasodilator functions
during the development of hypertension.(105) Despite
the lack of a consensus regarding how the two stress
systems influence each other, it seems reasonable to
generalize, based on the current findings on NO and
CO, that iNOS is the destructive player contributing
to oxidative stress while HO-1 is the defensive play-
er mounting against it. Given this, methods that
inhibit iNOS(106) or upregulate HO-1(107) may become
invaluable antihypertensive measures. Of course, the
metabolism of NO and CO is more complex than it
appears and both signaling molecules could, at times,
evoke an opposing set of actions in the regulation of
blood pressure depending on specific temporal and
spatial contexts. With many of these mysteries being
unsolved and still a matter of debate, only a clear
understanding of the mutual relationship between the
two systems and their intimately linked regulation
would allow the development of targeted therapeutic
strategies to prevent or treat vascular dysfunction.
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李菁瑩 顏茂雄

血壓為人體生命重要指標之一，它透過複雜機轉來調控血管收縮與舒張，以維持血壓之

恆定。當血管對血管舒張劑反應訊號不良或血管組織受發炎損害時，高血壓便接踵而來，以

動脈粥狀樣化所導致高血壓為例，這種疾病為困擾人類一種慢性疾病。新近研究顯示一氧化

氮 (NO) 與一氧化碳 (CO)，分別為 iNOS 與 HO-1 合成，為高血壓發展過程扮演重要血壓恆

定調控角色。然而有關這兩種系統之間在人體遭受壓力改變下如何互相作用則仍不清楚，有

待進一步探討。然而對此兩系統間交互作用之相關新知將提供有關高血壓疾病發展過程重要

機轉之瞭解以便將來作為設計新治療藥物之重要參考策略。本篇回顧性文章，將提供有關 NO

與 CO 功能及其對心血管生理與病理相互關係，並參考最新文獻發現作為詳細研究之剖析。因

此，我們將以本實驗室過去研究成果及最新文獻發現兩系統間之動力平衡與彼此相互作用之

可能理論基礎作詳細討論以供讀者參考。(長庚醫誌 2009;32:12-21)
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