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The Role of Proximal Tubular Cells in Interstitial Fibrosis:
Understanding TGF-β1

Aled Phillips, BsC, MD, FRCP

In PTC, it is clear that TGF-β1 synthesis may be controlled independently at the levels
of transcription and translation. In the context of diabetic nephropathy glucose is a potent
stimulus of TGF-β1 promoter activity. The resultant transcript is however poorly translated
such that stimulation of PTC with glucose does not increase de novo TGF-β1 protein syn-
thesis. Although diabetes is a “metabolic” disease, in the kidney, nephropathy is associated
with an inflammatory cell infiltrate. For example using the GK rat model of type II diabetes,
we have demonstrated that progressive renal disease is associated with a prominent
macrophage influx. This led us to examine TGF-β1 regulation when the effects of
macrophage derived cytokines such as platelet derived growth factor and interleukin-1 are
combined with exposure to elevated glucose concentrations. These studies have demonstrat-
ed that such cytokines specifically facilitate translation of glucose induced TGF-β1 tran-
scripts.

In addition, direct interaction between monocyte-macrophage CD18 and PTC cell sur-
face ICAM-1 stimulates TGF-β1 synthesis. Recent data from numerous experimental sys-
tems have suggested that the extracellular matrix component hyaluronan (HA) may be
involved in the regulation of the inflammatory process. We have now identified HA based
structures synthesised on the surface of PTC, which act to prevent PTC-macrophage interac-
tion through ICAM-1 thus preventing macrophage driven TGF-β1 synthesis. Disease pro-
moting cytokines such as IL-1β down-regulate these structures whilst potential therapeutic
agents such as BMP-7 increase their assembly, that HA may possess disease limiting activi-
ty. (Chang Gung Med J 2007;30:2-6)
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Special Edition

Why are we interested in the proximal tubular
cell?

Renal interstitial fibrosis is the common end result
caused by diverse clinical entities such as

obstruction, chronic inflammation and diabetes,
resulting in end stage renal failure.(1,2) With the reali-
sation that the degree of interstitial fibrosis is the
best correlate with the rate of progression of renal
dysfunction,(3-8) interest has focused on the possible

mechanisms which may drive this process. The most
prominent cell type in the renal cortex is the proxi-
mal tubular epithelial cell (PTC), responsible in
health for the maintenance of fluid and electrolyte
balance. This cell type may influence the fibrotic
process in the renal interstitium both by the genera-
tion of pro-fibrotic cytokines and also through the
process of epithelial-mesenchymal transformation.
PTC may be one source of the interstitial fibroblast
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which is a key direct mediator of the fibrotic process.
The most common cause of renal failure in our

patient population in the UK is now diabetic
nephropathy in which hyperglycaemia is thought to
play a key role. Many of our studies are focused on
identifying the mechanisms which stimulate PTC
transforming growth factor β1 (TGF-β1) synthesis in
the context of diabetic nephropathy,(9-13) as TGF-β1
plays a pivotal role in accumulation of extracellular
matrix during renal fibrosis and the transition of
renal tubular epithelial cells to myofibroblasts.(14,15)

TGF-β1 regulation
A single TGF-β1 transcript 2.5 KB in length has

been described in human cells. Many studies have
shown that this is inherently poorly translated, lead-
ing to tissue specific disparity between mRNA and
protein expression. Our studies have confirmed that
this is also true of TGF-β1 mRNA expressed by
PTC. Exposure of PTC to elevated D-glucose con-
centrations increased the expression of a poorly
translated TGF-β1 transcript without any associated
change in TGF-β1 protein synthesis.(9) More recently
we have demonstrated synergistic effects on TGF-β1
synthesis following PDGF stimulation of glucose
pre-treated cells.(11) Without a prior glucose- induced
increase in the amount of TGF-β1 transcript, PDGF
did not stimulate significant TGF-β1 protein synthe-
sis. PDGF at low doses did not influence TGF-β1
transcription, but led to alteration in glucose induced
TGF-β1 mRNA stability and translation. We have
also demonstrated that prolonged culture of PTC
under conditions of high glucose stimulated de-novo
TGF-β1 synthesis, a process that involved a
p38MAP kinase mediated glucose dependent
increase in TGF-β1 transcription, and stimulation of
PDGF alpha receptor signalling which facilitated
TGF-β1 mRNA translation, the latter being depen-
dent upon activation of the ERK MAP kinase path-
way.(12) Translational regulation of TGF-β1 synthesis
is not, however, confined to PDGF. Stimulation of
glucose pre-treated PTC with IL-1β also facilitates
TGF-β1 mRNA translation, a process that is accom-
panied by an increase in TGF-β1 mRNA stability.(10)

The 2.5 kb TGF-β1 transcript has unusually long,
GC rich 5’ untranslated regions (UTR),(16) a feature
suggestive of translational regulation.(17) This region
has been demonstrated to inhibit translation in vitro,
and deletion analysis of the 5’UTR using heterolo-

gous reporter gene constructs suggests that the
region between nucleotides +11 and +147 (termed
the D region) is the key part of this sequence with
respect to inhibition of translation.(18) Our recent
work has highlighted the importance of the 5’
untranslated region of TGF-β1 mRNA in translation-
al regulation of TGF-β1, and has identified the Y-box
protein-1 (YB-1) as an important regulator of transla-
tion through interaction with the 5’UTR +11-+147
region of TGF-β1 mRNA.(19)

Macrophages as the “second stimulus”
Our work, therefore, suggests that elevated glu-

cose concentrations alone may be insufficient to ini-
tiate pathological changes, but may prime the kidney
for enhanced responses when exposed to other
insults. This is consistent with the clinical observa-
tion that only 30% of all diabetic patients develop
diabetic nephropathy, and that its pathogenesis is
multifactorial in aetiology, rather than the sole result
of hyperglycaemia. Identification of the source of
factors which may act synergistically with glucose to
initiate pathological changes in diabetic nephropathy
is therefore an important goal.

Although considered primarily to be a metabolic
abnormality, macrophage infiltration has been impli-
cated in recent studies in the pathogenesis of diabetic
nephropathy. In vivo studies of streptozotocin-
induced diabetic rats demonstrated prominent
macrophage infiltration.(20, 21) A role for macrophages
is further supported by our studies in the Goto-
Kakizaki model of type II diabetes. This is a model
of prolonged type 2 diabetes with no overt renal dis-
ease.(22) Induction of hypertension in these animals,
however, led to prominent tubulo-interstitial
macrophage influx and significant interstitial
fibrosis(23) In addition to work in animal models of
diabetic nephropathy, studies of renal biopsies taken
from patients with non-insulin-dependent diabetes
mellitus also suggested that macrophages and their
products are involved in the initiation of the patho-
logical changes of human diabetic nephropathy.(24)

Clearly macrophages are a rich source of cytokines
such as IL-1β and PDGF, which in vitro, act syner-
gistically with glucose to stimulate generation of the
pro-fibrotic cytokine TGF-β1as discussed above.
How then could macrophages be recruited into the
renal interstitium and what is the role of PTC in the
process?
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Hyaluronan - regulator of macrophage recruit-
ment, TGF-β1 generation and signalling?

In addition to alterations in the turnover of
“normal” matrix constituents, the diabetic state may
also lead to the de novo induction of “abnormal”
structural elements such as hyaluronic acid (HA), the
accumulation of which may be associated with
inflammatory diseases.(25,26) HA is a water-soluble
glycosaminoglycan, which is a key constituent of the
peri-cellular matrix and has important structural
functions in the extracellular matrix of all tissues. It
has only recently been recognised that it can perform
more subtle functions than just serving as a structural
scaffold. HA may function as a cellular signalling
molecule, following either binding to its cell surface
receptors, (CD44 and RHAMM) or following inter-
nalisation via CD44 mediated endocytosis.(27) The
functional significance of altered generation of HA
in the kidney, remains unclear.

The association of an increase in HA in the
renal cortical interstitium and the rate of progression
of IgA nephropathy has led to the hypothesis that
HA has a disease promoting activity. This is support-
ed by in vitro studies, as addition of exogenous low
molecular weight hyaluronan induced monocyte
chemoattractant protein-1 expression(28) and up-regu-
lation of ICAM-1 and VCAM-1(29) in renal tubular
epithelial cells, suggesting a potential pro-inflamma-
tory effect for HA in the renal cortex. In contrast to
these potential pro-inflammatory effects of low mol-
ecular weight HA, we have demonstrated that addi-
tion of exogenous HA of a high molecular weight (2
x 106) and crosstalk between CD44 and the TGF-β
receptor leads to attenuation of TGF-β1 signalling,(30)

increased trafficking of TGF-β receptors to lipid raft-
associated pools(31) and increased receptor turnover.
Significantly however HA of lower molecular weight
(65000) did not antagonise the effect of TGF-β1.(31)

These observations are consistent with the assump-
tion that in general, high molecular weight HA repre-
sents the normal homeostatic state whereas the gen-
eration of low molecular weight HA fragments sig-
nals a disruption of the normal homeostatic environ-
ment, which may have disease promoting activity.

Several cell types in vitro surround themselves
with HA in an organised peri-cellular matrix or
“coat”(32,33) in which HA may be anchored to the sur-
face of cells via an interaction with CD44.(34) We
have demonstrated that organisation of HA into peri-

cellular coats is associated with enhanced migration
in PTC. In PTC this effect is mimicked by CD44
activation achieved by addition of exogenous HA in
an epithelial cell scratch wound model. As epithelial
cell migration is a critical step in epithelial-fibroblast
transdifferentiation,(14) we have postulated that
enhanced coat formation may be an important com-
ponent of this process. We have used our PTC model
in order to further examine the factors which regulate
assembly of peri-cellular HA. In this cell type, stimu-
lation of HA synthesis by factors generally consid-
ered to promote renal injury, such as elevated glu-
cose concentrations (diabetic nephropathy) or the
pro-inflammatory cytokine IL-1β, is associated with
transcriptional activation of HA synthase 2 (HAS2).
We have generated stable PTC/HK2 lines over-
expressing the inducible and constitutive HAS iso-
forms HAS2 and HAS3. Over-expression of HAS2
cDNA increased HA synthesis and increased the
peri-cellular HA matrix and a corresponding increase
in cell migration. This is therefore consistent with a
disease promoting function for inducible HA synthe-
sis.

In addition to HA “coats”, we have demonstrat-
ed that PTC form peri-cellular HA cable-like struc-
tures that bind mononuclear leukocytes via their cell
surface CD44 receptors,(35) and that binding of mono-
cytes to these structures attenuates monocyte depen-
dent PTC generation of TGF-β1.(36) Generation of
HA cables is a regulated process. Bone morphogenic
protein-7, a member of the TGF-β super-family
which is down-regulated in renal disease, is a stimu-
lus which facilitates cable formation, while the pro-
inflammatory cytokine IL-1β, a factor associated
with acute injury, markedly decreases cable forma-
tion. From these data we have postulated that HA-
cables represent a mechanism which under normal
conditions prevents tissue leukocytes initiating tissue
injury, while the loss of the cables associated with
acute or chronic renal injury removes this protective
mechanism, and allows leukocytes to interact direct-
ly with resident epithelial cells triggering a cascade
of events leading to progressive fibrosis. In contrast
to HAS2, the HAS3 isoform of HA synthase is con-
stitutively expressed by PTC.(37) In a HAS-3 over-
expressing cell line, we demonstrated an increase in
HA cables. This was associated with enhanced HA
dependent leukocyte binding and a reduction in
ICAM-1 dependent TGF-β1 synthesis. This is there-
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fore consistent with the hypothesis that HAS3, con-
stitutive HA generation, may be a mechanism to
maintain normal homeostasis. What is now apparent
however is that the significance of alteration in HA
synthesis is not solely the result of HAS isoform
expression, as the expression and function of hyalad-
herins which regulate the “packaging” of HA also
contribute to its functional consequence. These
results suggest that the context in which HA is gen-
erated in the kidney will dictate if it has a disease
promoting or disease limiting function. This concept
is further supported by studies in which we have
demonstrated that HA may down-regulate TGF-β1
signalling, which is in contrast to stimuli such as glu-
cose, which enhance signalling. To further clarify the
significance of alterations in HA, we have examined
the expression of HA in renal biopsies of a cohort of
patients with diabetic nephropathy. In these studies
we have shown that although HA expression increas-
es at all stages of disease, its presence does not pre-
dict outcome. In contrast, outcome is well predicted
with the degree of inflammatory infiltrate, which in
turn does not correlate with HA expression. This
therefore suggests that HA is not driving the inflam-
matory/fibrotic response, which is consistent with
our in vitro data.

In conclusion these studies support the concept
that PTC contribute to fibrotic changes in the renal
intersititum. In addition it is clear that the regulation
of TGF-β1 synthesis in the renal cortex is a complex
process in which interactions between PTC, infiltrat-
ing inflammatory cells and the extracellular environ-
ment/matrix all play important roles.
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