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Intracellular Signaling Mechanisms Underlying the Expression
of Pro-inflammatory Mediators in Airway Diseases

Chuen-Mao Yang1,2, PhD; Hsi-Lung Hsieh2, PhD; Chiang-Wen Lee2, MS

Several factors have been shown to trigger the pathogenesis of
asthma and airway inflammation mechanisms. Elevated levels of pro-
inflammatory cytokines including tumor necrosis factor-α and inter-
leukin-1β in the bronchoalveolar lavage fluid have been detected in
asthmatic patients. Cytokines exert as potent stimuli in inflammatory
responses through up-regulation of many gene expressions, including
cytokines, chemokines, cytosolic phospholipase A2, cyclooxygenase,
adhesion molecules and matrix metalloproteinases. The extent of these
gene expressions is correlated with the severity of inflammation.
However, the intracellular signaling mechanisms underlying the
expression of target proteins regulated by these factors are elusive. The
mechanisms underlying actions by cytokines may be integrated to the
signaling networks that augment airway inflammation by recruiting
leukocytes and leading to airway remodeling. Although cytokines have
been reported to activate mitogen-activated protein kinases including
p42/p44 and p38, and c-Jun N-terminal kinase, the relationship between the activation of
these pathways and expression of inflammatory genes remains unknown. Moreover, many
genes regulated by mitogen-activated protein kinases are dependent on NF-κB for transcrip-
tion. NF-κB has also been shown to be involved in target protein expression at the transcrip-
tional level in various cell types. We review the mechanisms underlying the intracellular sig-
naling involved in several target protein expressions induced by cytokines in airway resident
cells. Conclusion: Increased understanding of signal transduction mechanisms underlying
target protein gene expression will create opportunities for the development of anti-inflam-
mation therapeutic strategies. (Chang Gung Med J 2005;28:813-23)

Key words: interleukin-1ββ, tumor necrosis factor-αα, cyclooxygenase-2, cytosolic phospholipase A2,
prostaglandin E2, MAPKs, NF-κκB, adhesion molecules, matrix metalloproteinases.

Airway inflammation is central to the pathogene-
sis of asthma and other airway diseases, such as

chronic obstructive pulmonary disease. In the last
decade, several citations have suggested that inflam-
matory processes that underlie airway diseases are
regulated by a network of mutually interacting

cytokines. Elevated levels of pro-inflammatory
cytokines including tumor necrosis factor-α (TNF-α)
and interleukin-1β (IL-1β) in the bronchoalveolar
lavage fluid have been detected in allergic asthmatic
patients.(1,2) Recent evidence suggests that cytokine-
induced changes in the airway’s smooth muscle phe-
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notype may modulate bronchial hyper-responsive-
ness and airway inflammation.(3) In previous years,
our group has demonstrated that TNF-α and IL-1β
may trigger some intracellular signaling pathways to
regulate many inflammatory gene expressions in air-
way resident cells, including human/canine airway
smooth muscle cells (ASMCs) and human lung
epithelial cell line A549.

Cytokines present in the airways clearly regulate
both the initiation and maintenance of immune and
inflammatory responses. They are secreted by a vari-
ety of cells including monocytes and macrophages
that respond to virus infection, activated by lympho-
cyte products, microbial toxins and other stimuli.(4)

Several studies have demonstrated that TNF-α and
IL-1β are the most potent cytokines and exert influ-
ence on a wide range of biological activities in air-
way inflammatory diseases including asthma and
bronchiotitis.(5-10) Moreover, there is increasing evi-
dence that TNF-α and IL-1β are directly linked to
airway inflammation and hyper-responsiveness
observed in asthma. ASMCs are one of important
effector cells in asthma. Previous studies have
demonstrated that ASMCs are multifunctional, hav-
ing the capacity for contraction, migration and prolif-
eration, and synthesis of extracellular matrix (ECM),
growth factors, cytokines, chemokines and matrix
metalloproteinases (MMPs).(11,12) For example, human
TNF-α is synthesized as a pro-protein comprising
233 amino acids, with a molecular mass of 26 kDa.
The pro-protein is cleaved by a specific metallopro-
tease (also named TNF-α converting enzyme,
TACE) to yield a monomeric form of 17 kDa com-
prising 157 nonglycosylated amino acids.(13) The
pleiotropic actions of TNF-α range from prolifera-
tive responses, such as cell growth and differentia-
tion, to host defense effects, such as inflammation
and autoimmunity, and to destructive cellular out-
comes, including apoptotic and necrotic cell death
mechanisms.(14) By contrast, IL-1 is a family of pro-
teins. IL-1α and β are believed to exert identical
actions through a single receptor (IL-1RI), which
requires an accessory protein (AcP) for signal trans-
duction. A third member of the family, IL-1 receptor
antagonist (IL-γa), acts as a highly selective, compet-
itive antagonist, which appears to block all actions of
IL-1 but has no identified independent actions.(15) All
three IL-1 molecules are formed as precursors: pro-
IL-1α and pro-IL-1ra are biologically active but pro-

IL-1β is inactive. Cleavage and release of active IL-
1β from cells is catalyzed by caspase-1, one of a
family of enzymes that are central mediators of
apoptosis.(16) On the basis of our studies, TNF-α and
IL-1β exert similar responses, mediated through
common mechanisms, in airway inflammation. We
and others have found that ASMCs have a highly
increasing level of inflammatory proteins induced by
TNF-α or IL-1β. These inflammatory-corresponding
proteins include cytosolic phospholipase A2 (cPLA2),
cyclooxygenase (COX)-2, adhesion molecules,
chemokines and proteases.(4,6,17-19) Furthermore, the
cellular and molecular mechanisms regulating the
expression of inflammatory genes in ASMCs by
cytokines will probably lead to new therapeutic
approaches in the management of asthma. In our pre-
vious studies, there are, at least in part, several sig-
naling pathways involved in the regulation of the
expression of inflammatory genes in ASMCs and
A549 cell line.(4,17,19-22) These mechanisms involve
JNK, ERK, p38 MAPK, PKC, calcium and
Src/EGFR/PI3K/Akt transactivation pathways and
lead to activation of transcription factors such as NF-
κB and AP-1. This review, giving an understanding
of the contributions of cytokines to ASMCs and
A549 cell line linked with airway inflammation, may
therefore provide a new insight into the pathogenesis
of respiratory diseases.

Roles of COX-2 and PGE2 in airway inflamma-
tory diseases

We and others have demonstrated that human or
canine ASMCs express COX-2 upon stimulation by
a variety of pro-inflammatory cytokines such as
TNF-α , IL-1β and other mediators(4,17,19,20,23) and
release a large amount of prostanoids, mainly
prostaglandin E2 (PGE2). Prostaglandins (PGs) play
important roles in many biological processes, which
in turn, in an autocrine manner, modulate the cell
functions such as proliferation, relaxation and the
synthesis of growth factors. Altered prostanoid pro-
duction is associated with a variety of illnesses,
including acute and chronic inflammation, cardiovas-
cular disease, colon cancer and allergic diseases.(24)

COX is the rate-limiting enzyme for the conversion
of arachidonic acid to prostanoids and exists in two
isoforms: COX-1 is constitutively expressed and is
homeostatic in function as the housekeeping form; in
contrast, COX-2 is associated with inflammation and
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is induced in response to mitogenic and proinflam-
matory stimuli. The expression of COX-2 is a key
element in various pathophysiological processes,
including inflammation,(25) cardiovascular disease,(26)

tissue remodeling(27) and cancer.(28) In contrast, COX-
2 is recognized as mediating inflammatory responses
and is highly restricted under basal conditions but is
rapidly induced by pro-inflammatory cytokines.(29) In
our studies, the MAPK and NF-κB pathways play
key roles in regulation of COX-2 expression and
PGE2 production in human or canine ASMCs.(4,17,19,20)

Pretreatment with several pharmacological inhibitors
of MEK1/2 (PD98059), p38 MAPK (SB202190),
tyrosine kinase (genistein), phosphatidylcholine-spe-
cific phospholipase C (PC-PLC) (D-609) and PKC
(GF109203X), attenuated TNF-α or IL-1β-induced
COX-2 expression and PGE2 synthesis in TSMCs.
TNF-α- or IL-1β-induced COX-2 expression and
PGE2 synthesis are also inhibited by a selective NF-
κB inhibitor pyrrolidine dithiocarbamate (PDTC).
These findings suggest that the increased expression
of COX-2 correlates with the release of PGE2 from
TNF-α- or IL-1β-challenged TSMCs, at least in part,
mediated through p42/p44 and p38 MAPKs as well
as NF-κB signaling pathways. In addition, PKC-
dependent tyrosine kinase activation is also involved
in TNF-α-induced NF-κB activation and COX-2
expression in NCI-H292 alveolar epithelial cells.(30,31)

Several bacterial products such lipoteichoic acid
(LTA), a major component of the gram-positive bac-
terial cell wall, and lipopolysaccharide (LPS), a
major component of the gram-negative bacterial cell
wall, and pro-inflammatory mediator bradykinin
(BK) also induce COX-2 expression and PGE2 syn-
thesis via similar signaling pathways in human lung
epithelial cell line A549.(32,33) Moreover, COX-2 pro-
tein expression is regulated by PI3K/Akt pathway in
A549 cell line.(34,35) In our previous studies, the results
show that LPS stimulates COX-2 up-regulation in
canine ASMCs.(19) It has been shown that activation
of macrophages by LPS is mediated by LPS-binding
protein, which transfers LPS to its cellular receptor
consisting of CD14, Toll-like receptor 4 (TLR4) and
the MD-2 molecule in several cell types.(36-39) Further,
we first show that in HTSMCs, LTA triggers activa-
tion of p42/p44 MAPK pathway, mediated through a
TLR2 receptor.(40) It remains unclear, however,
whether LTA elicits signaling through TLR2 for
COX-2 expression in airway resident cells. Taken

together, these results indicate that the role of COX-
2-derived PGE2 synthesis might play a pivotal role in
airway inflammation diseases.

Role of cPLA2 in airway inflammatory diseases
Mammalian cells contain structurally diverse

forms of PLA2 including secretory PLA2 (sPLA2),
calcium-independent PLA2 (iPLA2) and the novel,
high molecular weight (85 kDa) cPLA2.(41) cPLA2 is
the major intracellular form of PLA2, which prefer-
entially hydrolyzes membrane phospholipids at the
sn-2 position to release arachidonic acid and repre-
sents the rate-limiting enzyme in eicosanoid produc-
tion. cPLA2 is a widely distributed enzyme and the
transcript is expressed at a fairly constant level in all
human tissues with somewhat elevated levels in the
lung and hippocampus.(41-43) The increase in cPLA2

activation and expression following external stimuli,
including pro-inflammatory cytokines, growth fac-
tors and oxidants, is often observed in several sys-
tems.(44,45) The cPLA2 promoter has been isolated
from both human(46,47) and rat,(48) which contains a
number of putative regulatory elements including
AP-1 sites, NF-κB sites and glucocorticoid regulato-
ry elements. Previous studies have reported that the
c-Jun N-terminal kinases (JNK) and ERK pathways
are necessary for induction of cPLA2 in lung epithe-
lial cells and non-small cell lung cancer. Activation
of JNK, ERK and Ras pathways leads to induction of
c-Jun protein, which showed functional cooperation
with Sp1 in driving cPLA2 promoter activity.(49) In
addition, regulation of cPLA2 by phosphorylation is
related to released arachidonic acid. Activation of
different MAPK cascades, including p42/44 MAP
kinase (ERK1/2), p38 MAPK and/or JNK, can
directly phosphorylate at Ser505 and Ser727 on cPLA2

and has been described in several cell types.(50-53)

Previous studies have shown that PMA, a PKC acti-
vator, induces cPLA2 α expression in various cell
types including human bronchial epithelial cells.(54,55)

Moreover, activation of cPLA2 by epidermal growth
factor (EGF) and calcium ionophore (A23187)
results in increasing IL-8 and COX-2 reporter gene
activity in A549 cell line.(56) However, it remains
unclear whether cPLA2 expression and activation in
ASMCs by inflammatory mediators, such as
cytokines, bacterial products and BK, may influence
COX-2 protein expression and PGE2 synthesis.
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Role of adhesion molecules in airway inflam-
matory diseases

Leukocytes continuously circulate throughout
the body in order to come into contact with antigens
sequestered within tissues. To enter tissues, circulat-
ing leukocytes migrate from the blood, between vas-
cular endothelial cells and into the tissue. During this
migration, leukocytes initially bind to endothelial
cells via low affinity adhesion molecules. The low
affinity adhesion in combination with the force of the
blood flow results in the rolling of leukocytes on
endothelial cells. Subsequently, adhesion molecule
affinity is up-regulated and leukocytes firmly adhere
to the endothelium.(57,58) Finally, bound leukocytes
migrate between the endothelial cells and into the tis-
sue. Vascular cell adhesion molecule-1 (VCAM-1
CD106) is one of the inducible cell transmembrane
glycoproteins of the immunoglobulin supergene fam-
ily expressed in several cell types, and plays an
important role in a number of inflammatory and
immune responses.(59,60) VCAM-1 structure and bind-
ing functions have been characterized. It binds to
α4β1 (Very Late Antigen-1; VLA-4; CD49d/CD29)
or α4β7 integrins on leukocytes. It was first identified
as an adhesion molecule induced in endothelial cells
by inflammatory cytokines (IL-1β and TNF-α) or
LPS.(61,62) Up-regulation of VCAM-1 expression in
cytokine-triggered vascular endothelial cells
enhances the targeted transmigration of polymor-
phonuclear leukocytes (PMNs) into the extravascular
space of inflammation.(63) We and others have
demonstrated that induction of VCAM-1 is regulated
by inflammatory cytokines such as IL-1β, TNF-α,
and IFN-γ on human umbilical vein endothelial cells,
pulmonary artery endothelial cells,(64) intestinal
epithelial cells,(65) keratocytes,(66) renal tubular epithe-
lial cells,(67) pulmonary epithelial cells A549,(21) and
human ASMCs.(22) The other important adhesion
molecule is the intercellular adhesion molecule-1
(ICAM-1 CD54). In a number of inflammation and
immune responses, ICAM-1 binds to two integrins
belong to the β2 subfamily, LFA-1 and Mac-1, both
are expressed by leukocytes and promote the adhe-
sion and transendothelial migration of leukocytes.
Basal levels of ICAM-1 are low but high expression
also can be induced in a number of cell types by a
wide range of ligands, including LPS, phorbol esters
and inflammatory cytokines such as IL-1β and TNF-
α.(68,69) In normal processes, the adhesion molecule is

important during development since VCAM-1
knockout is lethal to embryonic development.
However, in pathogenesis, adhesion molecule
expression is induced on endothelial cells during
inflammatory bowel disease, atherosclerosis, infec-
tion and asthmatic responses. In airways, to reach the
submucosa and airway lumen, circulating PMNs
must first be recruited across the vascular endotheli-
um and then migrate through the interstitial matrix
before interacting with the airway epithelium.(70,71) In
the pathogenesis of asthma, eosinophil migration
into the lung is adhesion molecule dependent.(72,73)

Accumulation of inflammatory cells within the air-
ways can be influenced by expression of adhesion
molecules on airway epithelium. Thus, similar
processes that govern PMN adhesion to lung airway
resident cells may occur and contribute to the dam-
age to these cells seen in asthma inflammatory
responses.(74,75) This event is crucial in the develop-
ment of allergic inflammation and is mediated by
adhesion molecules and cytokines.(76-78) During these
interactions, PMNs and lung tissue undergo
cytokine-specific up-regulation of adhesion mole-
cules.(79) Several reports have described that ICAM-1
or VCAM-1 expression induced by pro-inflammato-
ry cytokines may be mediated through a number of
MAPKs, the transcription factor NF-κB and AP-1.(80-

85) The regulation of NF-κB by cytokines is an exam-
ple of a signaling pathway which is fundamentally
important in inflammatory diseases. NF-κB activa-
tion requires phosphorylation-dependent degradation
of the κB protein inhibitor (IκB), which sequesters
NF-κB in the cytoplasm. This step is mediated via a
multiprotein IκB kinase (IKK) complex consisting of
two catalytic subunits, IKKα and IKKβ, and a regu-
latory subunit, IKKγ, which is in turn activated by
receptor inactivating protein (RIP). Through this
pathway, cytokines target IκB to the proteosome for
ubiquitination and stimulate translocation of NF-κB
into the nucleus.(86-88) However, there is a difference
between our studies and others: in A549 cells, acti-
vation of p42/p44 MAPK and JNK cascades, at least
in part, mediated through NF-κB pathway is essen-
tial for IL-1β induced ICAM-1 gene expression;(21)

others mention that Src activation by PKC mediated
through NF-κB pathway is essential for IL-1β- or
TNF-α-induced ICAM-1 but not p44/42 MAPK, p38
and JNK pathways.(89) In addition, our findings also
show that IL-1β or TNF-α-induced VCAM-1 expres-
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sion is mediated by the NF-κB pathway based on the
early nuclear NF-κB translocation but activation of
NF-κB is independent on p44/42 MAPK, p38 and
JNK pathways. However, activation of p44/42
MAPK, p38 and JNK is also involved in IL-1β or
TNF-α -induced VCAM-1 expression in human
ASMCs.(22) Furthermore, clarifying that the mecha-
nisms underlying the expression of adhesion mole-
cules in airway resident cells may be candidate tar-
gets for therapeutic intervention in certain conditions
of airway inflammation.

Role of MMPs in airway inflammatory diseases
Airway remodeling, a key feature of persistent

asthma, is also characterized by the deposition of
ECM proteins in the airways.(90,91) Matrix metallopro-
teinases (MMPs) are a family of ECM-degrading
enzymes and are induced by different stimuli includ-
ing growth factors, cytokines and tumor promoters.
MMPs play important roles in inflammation, tissue
remodeling, angiogenesis, wound healing, tumor
invasion and metastatic progression.(92-94) MMP-9
(gelatinase B, 92-kD type IV collagenase) is one of
two MMPs referred to as gelatinases and released
from cells as a proenzyme. The other is MMP-2
(gelatinase A, 72-kD type IV collagenase). MMP-9
cDNA was first cloned from transformed human
fibroblasts.(95) The MMP-9 gene is on human chro-
mosome 20q11.1-13.1, a position associated with
bronchial hyper-responsiveness.(96) More than 100
articles have shown that MMP-9 is present at low
quantities in the healthy adult lung but much more
abundantly in several lung diseases, including asth-
ma and chronic obstructive pulmonary disease.(97)

Recent evidence also suggests that MMP-9 is
induced during airway inflammation.(98) In the normal
lung, MMP-9 is not produced by resident cells but
under various forms of stimulation, bronchial epithe-
lial cells,(99) alveolar type II cells,(100) ASMCs(101) and
endothelial cells(102) produce MMP-9. Although sev-
eral lines of evidence have proved that MMP-9 plays
a critical role in airway inflammation, the mecha-
nisms involving this enzyme in inflammatory
responses are still unclear. Pro-inflammatory
cytokines such as TNF-α and IL-1β stimulate MMP-
9 production in many cell types.(103,104) It has been
demonstrated that cytokines exert their effects via
transcription factors such as AP-1 and NF-κB. The
MMP-9 promoter in a 2-kb 5' flanking region con-

tains AP-1, AP-2, SP-1 and NF-κB transcription fac-
tor binding sites. Several studies have shown that a
conserved proximal AP-1 binding site is required for
the induction of MMP-9,(105-107) and analysis of the
MMP-9 promoter has identified an essential proxi-
mal AP-1 element and an upstream NF-κB site.(108)

Recently, our studies have shown that MMP-9 is also
involved in brain injury. MMP-9 up-regulation is
stimulated by cytokines and BK in rat brain astro-
cyte-1.(109,110) IL-1β- and BK-induced MMP-9 mRNA
and protein expression are attenuated by inhibitors of
MEK1/2 (PD98059), p38 (SB20190), JNK
(SP600125), PI3-K (LY294002) and NF-κB (hele-
nalin). In accordance with these findings, phosphory-
lation of p42/p44 MAPK, p38, JNK and Akt, and
activation of NF-κB are attenuated by prior treatment
with PD98059, SB202190, SP600125, LY294002
and helenalin, respectively.(109,110) These results indi-
cate that MMP-9 expression is regulated by MAPKs,
PI3K/Akt and NF-κB pathways in RBA cell line. In
vivo, MMP-9 is likely activated via a protease cas-
cade. The pro-domain (~10 kDa) can be cleaved by
other proteases such as MMP-2, MMP-3 and MT1-
MMP.(94) We have found that up-regulation of MMP-
9 associated with cell migration is significantly
attenuated by both GM6001 (inhibitor of MT1-
MMP) and MMP-9 antibody in human limbal epithe-
lial cells.(111) However, the mechanisms of MMP-9
expression and activation in airway resident cells
mediated through a similar signaling pathway as
RBA-1 cells and human limbal epithelial cells need
to be further investigated.

Conclusion
In recent years, the signaling pathways regulat-

ing ASM growth, gene expression and protein syn-
thesis have been elucidated, and are summarized in
Figure 1. Binding of cytokines to their receptors
results in activation of p42/p44 MAPK, p38, JNK
and NF-κB pathways. These signaling pathways may
converge at some points and contribute to sustained
activation of transcription factors required for
inflammatory gene expression. For example, the
MAPKs and PI3K/Akt signaling pathways appear to
constitute the major pathways required for cell sur-
vival, proliferation and gene expression in both
immune and non-immune cells (airway epithelium,
ASM and lung parenchymal cells). Moreover, the
transcription factor NF-κB is also an important sig-
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naling module for synthesis of many of the mediators
such as cytokines (IL-1 and TNF-α) and adhesion
molecules (ICAM-1 and VCAM-1) in the processes
of chronic airways diseases such as asthma.
Elucidation of various signal transductions and the
molecular mechanisms regulating ASM gene expres-
sion may provide insight into the therapeutic strate-
gies of airway diseases and designing of new anti-
inflammatory drugs for treating asthma.
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