Ying-Tung Lau, PhD

Functional evidence for a rapid, receptor-dependent and genomic-independent action of estrogen in vascular cells continues to accumulate. Although the nature of the receptor is not yet clear, some of the hormone-induced effects can be blocked by known estrogen antagonists (e.g., ICI 182,780) and can be mimicked by membrane-impermeable forms of estrogen. Because the endothelial output of nitric oxide (NO) is a major regulator of several cardiovascular functions, regulation of NO production has received a lot of attention as a potential mechanism for the cardiovascular protection offered by estrogen. There is ample evidence that estrogen can stimulate NO production and activate endothelial NO synthase (eNOS) both in vitro and in vivo. Recent investigations have shown that estrogen's rapid stimulatory action on eNOS is mediated by the activation of phosphatidylinositol 3-kinase (PI3-K) and protein kinase B (PKB)/Akt pathway among other signaling systems. Although these effects are estrogen receptor-dependent, they are rapid (on the order of a few minutes) and transcription-independent and thus represent genomic-independent but receptor-mediated effects of a steroid operating in vascular cells. In this review, recent evidence for such mechanisms is summarized, and the role of estrogen receptors in vivo is also briefly discussed. (Chang Gung Med J 2002;25:636-44)

Key words: estrogen, nitric oxide, estrogen receptor, endothelial nitric oxide synthase, phosphatidylinositol 3-kinase, vascular functions.

Gender differences in cardiovascular mortality and morbidity exist,⁽¹⁾ and estrogens confer protection against atherosclerotic disease.⁽²⁾ The female hormone, estrogen (mainly 17 β -estradiol), causes a significant lipid-lowering effect; however, this effect can only account for a portion (~1/3) of the atheroprotective actions of E₂.^(3,4) Evidence shows that E₂ exerts direct protective effects on blood vessels including an increase in vasodilatation and a reduction in vascular injury response as well as in the development of atherosclerosis.⁽⁵⁾ Although the general functions of estrogen (E₂) and the mechanisms through the 'classic' (genomic) estrogen receptor (ER) to bring about these functions have been extensively investigated and reviewed,⁽⁶⁾ recent evidence indicates that a receptor-dependent but genomicindependent action of E_2 may play a role in the widely observed phenomena of vascular protection offered by E_2 .⁽⁷⁾ The goal of this brief review is thus to summarize the current understanding of this particular mode of E_2 's action.

Estrogen exerts diverse effects on the cardiovascular system including systemic effects such as lowering circulating cholesterol as well as direct vascular effects such as enhancing endothelium-dependent relaxation, and the actions may occur rapidly or only after the prolonged presence of E_2 .^(5,8,9) Currently, two estrogen receptors (ER α and ER β) are known,

From the Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan. Received: May 2, 2002; Accepted: Aug. 1, 2002

Address for reprints: Dr. Ying-Tung Lau, Department of Physiology and Pharmacology, College of Medicine, Chang Gung University. 259, Wen-Haw 1st Rd., Kweishan, Taoyuan 333, Taiwan, R.O.C. Tel.: 886-3-3283016 ext. 5095; Fax: 886-3-3283031; E-mail: ytlau@mail.cgu.edu.tw

and both are expressed in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) and in myocardial cells.⁽⁹⁾ They belong to the steroid/thyroid hormone superfamily of transcription factors⁽¹⁰⁾ and can regulate gene expression in both E₂-dependent and -independent manners.⁽⁶⁾ However, since the genomic action of E₂ usually requires a period of time (on the order of a few hours) to be implemented, a rapid (on the order of a few minutes) response to E_2 or a similar response to the membrane-impermeable form of E_2 (e.g., E_2 conjugated with bovine serum albumin) cannot be accounted for by the classic mode of nuclear ER's action. In this review, evidence and a potential mechanism for such a rapid, ER-dependent, yet genomic-independent action of E₂ is evaluated, with emphasis on the role of phosphatidylinositol 3-kinase (PI3-K). The physiological as well as the pathophysiological significance of ERmediated responses are discussed.

I. Rapid, Receptor-dependent Actions of E2

More than 20 years ago, E_2 's rapid action was first demonstrated in neurons where potassium currents were activated within seconds.⁽¹¹⁾ Following these findings, several G protein-coupled receptors including μ -opioid and β -adrenergic receptors were found to be affected via rapid protein kinase C and/or indirectly by protein kinase A signaling induced by E_2 in neuroendocrine cells.⁽¹²⁾ Recent studies of vascular ECs have presented a different picture, and several physiological effects other than the rapid electrophysiological responses have also been observed. A list of recent representative studies with cultured ECs is given in Table 1. It is clear that a major function of endothelium in the production of nitric oxide (NO) has been the focus of current investigations.

Because vascular endothelial dysfunction is recognized as a major component in most cardiovascu-

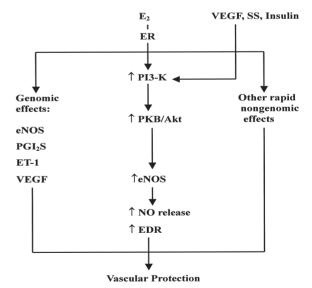
System (Ref.)	Site of action	Mode of action	Results
BAEC ⁽⁵⁷⁾	ER (ICI sensitive)	р38β МАРК	preserved stress fiber
		MAPKAP-2	and membrane integrity
		HSP27+P	
hAEC/BAEC ⁽²¹⁾	ERα	Akt+P, eNOS+P	reduced leukocyte
		transcription-indep.	accumulation
		WT-sensitive	
EA. hy926EC ⁽¹⁸⁾	ER (ICI-sensitive)	Akt+P; eNOS+P	NO release
	E2BSA	LY-sensitive	
PAEC ⁽¹⁹⁾	ERα (ICI-sensitive)	MAPK+P	NO release
		transcription-indep.	
HUVEC ⁽²⁰⁾	ER (ICI-sensitive)	eNOS-HSP90	NO release
		association herbimycin-sensitive	
HUVEC ⁽⁵⁸⁾	ER (ICI-sensitive)	Ca++ indep.	basal eNOS
		transcription-indep.	
HUVEC ⁽²²⁾	surface binding	ERK1/2 MAPK	NO/cGMP
	ERα (ICI-sensitive)		production
	E2BSA		
h mvEC ⁽⁵⁹⁾	acute response of	WT-sensitive	flow cessation-induced
	ischemia in situ		rapid NO and Ca++ increase

Abbreviations: BAEC: bovine aortic EC; EA. hy926 EC: human EC cell line; hAEC: human aortic EC; PAEC: pulmonary artery EC; hmvEC: human lung microvascular EC; ICI: ER antagonist (ICI 182,780 or ICI 164,384); E2BSA: membrane impermeable ligand of E2; MAPK: mitogen-activated protein kinase; MAPK AP-2: MAPK-activated protein kinase; HSP: heat shock protein; +P: phosphorylation; WT: wortmannin and LY: LY294002: PI3-K inhibitors.

lar disorders and endothelial NO synthase (eNOS or NOS III) is vital in maintaining the integrity of endothelium, the regulation of eNOS is the key event in understanding vascular responses induced by physiological (e.g., hormones) or pathophysiological (e.g., oxidative stress) changes.⁽¹³⁻¹⁶⁾ Transcriptional regulation and post-translational regulation characterized by subcellular translocation and covalent modifications such as phosphorylation, acylation, and protein-protein association with calmodulin and caveolin of the eNOS protein have been reviewed.^(13,17) Table 1 illustrates that shortly (on the order of a few minutes) following E2 stimulation both phosphorylation via mitogen-activated protein kinase (MAPK) and PI3-K protein kinase B (PKB, or Akt) signaling and protein-protein association with heat shock protein have been reported in EC. Most of these studies have also reported that these rapid actions of E2 stimulate eNOS activity and result in a rapid release of NO.(18-22) Evidence that these actions of E₂ are ER-dependent is based on observations that they are inhibitable by ER antagonists such as ICI 182,780. Furthermore, these actions are not the consequence of classic genomic-dependent effects of nuclear ER because (1) a membrane-impermeable agonist (e.g., E2BSA) is similarly effective;(18,22) (2) a rapid response (on the order of a few minutes) is observed;^(18-21,23) and (3) the actions are transcriptionindependent.^(18,19,21) Taken together, these results strongly indicate that E₂ causes rapid, ER-dependent but genomic-independent stimulation of eNOS activity via MAPK or PI3-K/PKB signaling pathways in cultured ECs. Involvement of the activation of ionic channels, the generation of cyclic nucleotides, and GPCR signaling during the rapid E₂ action have been reviewed elsewhere.^(7,24) Therefore, we only discuss recent evidence for this particular mode of signaling system, i.e., the PI3-K and PKB/Akt pathways elicited by E₂ resulting in the stimulation of eNOS and the generation of endothelium-derived NO that have often been proven responsible for the observed vascular protection.

II. PI3-K Signaling

PI3-K is a family of lipid kinases that can phosphorylate the D-3 position of the inositol ring of phosphoinositide lipid to form phosphatidylinositol (PtdIns) (3) phosphate (PtdIns (3)P), PtdIns^(4,5)-bisphosphate (PtdIns(4,5)P₂), and PtdIns(3,4,5)P₃. PI3-


K can be divided into 3 classes on the basis of their in vitro specificity to the lipid substrate, structure, and mode of regulation: class IA and IB (all lipids as substrates), class IIC2 α , (PtdIns and PtdIns(4)P as substrates), and class III (PtdIns as the only substrate). These lipids then bind to the pleckstrin homology (PH) domain of several proteins including PtdIns(3,4,5) P₃-dependent protein kinase-1 (PDK-1), serine/threonine protein kinases such as PKB/Akt, Brutons tyrosine kinase, and several guanine-nucleotide exchange proteins of the Rho family GTPases.⁽²⁵⁻²⁹⁾ These molecules are activated by many extracellular stimuli and have been implicated in a wide range of cellular processes, including metabolic control, cell cycle progression, cell growth, cell motility and adhesion, and cell survival.^(25,26,28,29) We concentrated on some recent studies in cultured vascular cells (ECs and VSMCs) and in isolated rat arteries to illustrate a variety of stimuli including physical challenges (e.g., balloon injury or shear stress) and hormonal factors (e.g., adrenomedullin and angiotensin II) which were found capable of activating the PI3-K signaling system and eventually leading to a protective effect often associated with enhanced NO production (Table 2). First, eNOS activity was increased through direct serine phosphorylation by PKB/Akt, indicating that the PI3-K connection in COS-7 cells (which do not express NOS) was co-transfected with eNOS and Akt as well as in mvECs,⁽³⁰⁾ bovine aortic ECs (BAECs),⁽³¹⁾ and human umbilical vein ECs (HUVECs).⁽³²⁾ Second, both vascular endothelial growth factor (VEGF) and insulin were found to stimulate NO production via a PI3-Kinhibitor (wild type (WT) and/or LY)-sensitive mechanism in HUVECs,(33,34) suggesting that different stimuli utilize PI3-K signaling to activate eNOS in the same cell. Third, in VSMCs, PI3-K activation is involved in angiotensin II-induced DNA synthesis and cell proliferation through generation of reactive oxygen species (ROS), a process which is likely involved in the proliferation of VSMCs during vascular injury.^(35,36) In fact, medial replication following balloon injury to rat arteries was found to be associated with PKB/Akt phosphorylation.⁽²³⁾ Furthermore, the finding that adrenomedullin enhances endothelium-dependent relaxation of intact rat aorta via Akt phosphorylation suggests that the PI3-K-PKB/Akt signaling system may play an important role in the homeostasis of vascular structure and function.(37)

System	Stimulant	Assay	Comment	Ref.
Rat aorta	adrenomedullin	Akt+P EDR	Ca ⁺⁺ /CaM dep.	52
VSMC/ at arteries	balloon injury	PKB+P	medial replication	23
COS-7 cells nv EC	VEGF	Akt+P eNOS+P	Ca++-indep. basal NO	30
VSMC	Angiotensin II	p85 (PI3-K)+P and translocation	DNA synthesis and hyperplasia	35
/SMC	Angiotensin II	Akt+P	ROS-mediated hyperplasia	36
BAEC	Sphingosine 1- phosphate	Akt+P eNOS/NO	Gβγ-regulated	60
BAEC	shear stress	Akt+P	eNOS+P	31
IUVEC	shear stress	Akt+P cGMP/EDR	eNOS+P Ca ⁺⁺ -indep.	32
HUVEC	VEGF	WT and LY-sensitive	eNOS/NO	33
HUVEC	insulin	WT-sensitive	NO production	34

 Table 2.
 PI3-K Actions in Vascular Cells

Abbreviations: EC: endothelial cell; BAEC: bovine aortic EC; HUVEC: human umbilical vein EC; mv EC: bovine lung microvascular EC; Akt or PKB: protein kinase B; CaM: calmodulin; +P: phosphorylation; WT: wortmannin; LY: LY294002; VEGF: vascular endothelial growth factor; EDR: endothelium-dependent relaxation.

The evidence thus has demonstrated that the PI3-K-PKB/Akt signaling system is activated through the ER-dependent vascular action of E_2 , as part of a program to stimulate eNOS for enhanced endothelial NO production in a genomic-independent manner (Table 1). In addition to the action of E_2 , a host of stimuli including other hormones and shear stress also utilizes the PI3-K pathway to activate eNOS in cultured ECs as well as in arterial tissue (Table 2). The involvement of PI3-K-eNOS coupling is neither limited to E₂ action nor to ECs alone,^(23,35,36) indicating the important position of PI3-K in the regulation of vascular homeostasis. Figure 1 summarizes the possibilities of ER-dependent vascular regulation mediated by E₂ which includes genomic actions, the PI3-K-eNOS pathway, and other non-genomic effects (e.g., via MAPK or Ca++ fluxes).^(38,39) The rapid non-genomic actions of E₂ are likely to be triggered after E₂ binding to a membrane component for signal transduction. However, the nature of such a plasma membrane ER is unknown, and its molecular structures have been proposed to be a protein unrelated to nuclear ER or a nuclear ER.(40)

Fig. 1 Vascular protective effects of E₂. E₂ binds ER and causes both long-term genomic effects which alter several genes (e.g., eNOS and ET-1) involved in vascular regulation and rapid nongenomic effects including the PI3-K-PKB/Akt-eNOS pathway and other signaling systems. ER: estrogen receptor; SS: shear stress; VEGF: vascular endothelial growth factor; PGI2S: prostacyclin synthase; ET-1: endothelin-1; EDR: endothelium-dependent relaxation.

III. Role of Cardiovascular ER in vivo

The above evidence, albeit strong, is mostly derived from in vitro investigations focusing on rapid PI3-K-mediated vascular actions of E₂. With the development of transgenic animal models, the physiological and pathophysiological roles of ER have also been examined in ER knockout (KO) mice. Two estrogen receptors, ER α and ER β , encoded in separate genes, have been characterized⁽⁴¹⁻⁴³⁾ and were found to be expressed in both ECs⁽⁴⁴⁾ and VSMCs.⁽⁴⁵⁾ Although early studies using an ovariectomized (OVX) ERaKO model and carotid arterial injury showed that E₂'s inhibition of vascular injury was independent of $ER\alpha$,⁽⁴⁶⁾ later investigations with transgenic animals demonstrated that ERa and/or ER β were involved in the E₂-elicited vascular protection (Table 3). However, the results were by no means simple or unequivocal to interpret and require careful considerations of various conditions of the animal model. In a study designed for obtaining unambiguous information, ovariectomized ER α ,

 Table 3. ER-dependent Protection in vivo

 β KO (in which both ER α and ER β were disrupted) mice and WT littermates were investigated following carotid artery injury with or without E2 administration.⁽⁴⁷⁾ It was found that E₂ inhibited the increase in the vascular medial area (as an index for injury) in WT mice but not in ERα,βKO mice, illustrating an ER-dependent mechanism of E₂ protection in reducing the extent of injury.⁽⁴⁷⁾ However, E₂ significantly increased the uterine weight and also inhibited proliferation of VSMC following injury to ERa, BKO mice, suggesting that either an ER-independent mechanism, an unidentified ER subtype, or residual activity of the ER α splice variant was involved in at least some of the beneficial effects of E₂.⁽⁴⁷⁾ These findings showed that even application to mice harboring disruptions of both ER α and ER β genes could not resolve the multiple possibilities of ER-mediated signaling in all target tissues. Furthermore, the most recent reports from the same laboratory^(47,48) have added a new player to the game. In ERBKO mice, VSMCs and blood vessels were found to exhibit

System (Ref.)	Protective role	Comments
FKBP 12.6 nullmice (50)	cardiac hypertrophic response	Tamoxifen
	to Ca++ dysregulation	sensitive;
		gender difference
ER β -deficient mice (48)	endothelium-independent	ICI sensitive
	vasoconstriction, K ⁺	iNOS dep.
	channel dysfunction, BP	both genders
Ovariectomized mice with E ₂	basal NO release enhanced	ERα-dep.
	ACh-induced EDR reduced	$ER\beta$ indep.
ER α (-/-) and ER β (-/-)(49)	NOS protein not affected	
Ovariectomized	lesion size reduced by E ₂	ERα dep.
mice also lack of apoE (51)		ERα(-/-)
ER α and ER β double knock	carotid artery injury	both ER α and
out mice (ER α , β KO) (47)	reduced by E_2 in control	$ER\beta$ involved
	but not in ER α , β KO	
Ovariectomized rats with E ₂ (61)	recovery of post-ischemic	iNOS stimulated
	cardiac function	(Ca++-indep.)
		cGMP increased
Ovariectomized	carotid artery injury	ERα indep.
ER α -deficient mice with E ₂ (46)	reduced in control and	-
	ΕRα ΚΟ	

Chang Gung Med J Vol. 25 No. 10 October 2002 functional abnormalities, and E2 augmented vasoconstriction instead of vasorelaxation, which may be related to iNOS and the potassium ion channel.⁽⁴⁸⁾ Both systolic and diastolic blood pressure increased in ERBKO mice, indicating that ERB may control important functions of vascular physiology involving iNOS in both genders.⁽⁴⁹⁾ Interestingly, in primary human VSMCs, transfection with ER β or ER α resulted in the opposite effect on the iNOS reporter gene, and transfection of both ERs resulted in intermediate activation of the reporter.⁽⁴⁸⁾ It has also been shown that basal NO production was increased in OVX-ER β KO mice in response to E₂, whereas this effect was abolished in OVX-ERBKO mice,(49) suggesting that it is ER α , not ER β , that mediates the beneficial effect of E₂ on basal NO production. Therefore, it appears that E₂'s protective effect on vascular functions may involve both $ER\alpha$ and $ER\beta$ as well as both eNOS and iNOS; it may exert its effects on both endothelium-dependent and -independent parameters, $(^{48,49)}$ and at times, the actions of ER α and ER β (e.g., iNOS induction) may antagonize each other.⁽⁴⁸⁾ Whether the rapid PI3-K-eNOS pathway is also involved in the long-term ER-dependent action of E_2 has not been directly examined yet. Table 3 also lists a couple of examples illustrating E₂'s cardioprotective actions.(50,51)

IV. Conclusions

Vascular endothelial and smooth muscle cells exhibit ER in both women and men,⁽⁹⁾ and ERα activates specific target genes (Fig. 1). In addition, rapid nongenomic effects involving ERα (Tables 1, 2) do not require alterations in gene expression but may activate a rapid signaling system, e.g., PI3-K-PKB/Akt^(18,21) or a protein-protein association, e.g., ER and HSP90,⁽²⁰⁾ to induce vasodilatation via the eNOS-NO pathway. In postmenopausal women, E₂ causes short-term dilatation of coronary and brachial arteries, mediated largely by the enhanced production of NO. This and other findings^(8,9) indicate that rapid ER-dependent activation of eNOS is consistent with the observed vasodilatation and may play an important role in the benefits associated with E₂.

The observed gender difference in vascular physiology and the protective role of E_2 in pathophysiology are interesting and elaborate, with many confounding factors. The multiplicity of interrelated elements, including social, personal, systemic, and

local (vascular cell) origins,⁽⁵²⁾ renders experimental approaches to understanding E₂'s protective actions difficult, sometimes even elusive. Although some 40 observational studies have suggested that women who take E₂ or hormone replacement therapy (HRT) exhibit a lower risk of coronary heart disease (CHD) than non-takers,^(53,54) randomized trials with preexisting CHD and secondary prevention trials have not confirmed the cardioprotective effect of E₂ or HRT.⁽⁶⁵⁾ The recent AHA Scientific Statement⁽⁵⁶⁾ should be consulted for readers who are interested in these apparent discrepancies.

Acknowledgments

The work from the author's laboratory was supported by grants CMRP736, CMRP990, NSC89-2320-B-182-027, and NSC89-2320-B-182-068. I thank Ms. L.Y. Chen for her excellent assistance in preparing the manuscript.

REFERENCES

- 1. Isles CG, Hole DJ, Hawthorne VM, Lever AF. Relation between coronary risk and coronary mortality in women of the Refew and Paisely survey: Comparison with men. Lancet 1992;339:702-6.
- Stampfer MJ, Colditz GA. Estrogen replacement therapy and coronary heart disease: A quantitative assessment of the epidemiologic evidence. Preventive Med 1991;20:47-63.
- Grady D, Rubin SM, Petitti DB. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med 1992;117:1016-37.
- 4. Mendelsohn ME, Karas RH. Estrogen and the blood vessel wall. Curr Opin Cardiol 1994;9:619-26.
- 5. Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J 1996;10:615-24.
- 6. Nilsson S, Makela S, Treuter E. Mechanisms of estrogen action. Physiol. Rev 2001;81:1535-65.
- Kelly MJ, Levin ER. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 2001;12: 152-6.
- Selzman CH, Whitehill TA, Shames BD, Pulido EJ, Cain BC, Harken AH. The biology of estrogen-mediated repair of cardiovascular injury. Ann Thorac Surg 1998;65:868-74.
- 9. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. New Engl J Med 1999;340:1801-11.
- 10. Mangelsdort DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M,

Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 1995;83:835-39.

- 11. Kelly MJ, Moss RL, Dudley CA. Differential sensitivity of preoptic-septal neurons to microelectrophoresed estrogen during the estrous cycle. Brain Res 1976;114:152-7.
- Kelly MJ, Wagner EJ. Estrogen modulation of G-proteincoupled receptors. Trends Endocrinol Metab 1999;10: 369-74.
- Michel T, Feron O. Nitric oxide and nitric oxide synthases. J Clin Invest 1997;100:2146-52.
- Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol 1999;31:23-37.
- 15. Boulanger CM. Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol 1999; 31:39-49.
- 16. Ross R. Atherosclerosis-an inflammatory disease. New Engl J Med 1999;340:115-25.
- 17. Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994;269:13725-8.
- 18. Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, Sessa WC, Bender JR. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 2000;87:677-82.
- Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW. Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 1999;103:401-6.
- Russell KS, Haynes MP, Caulin-Glaser T, Rosneck J, Sessa WC, Bender JR. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. J Biol Chem 2000;275: 5026-30.
- 21. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000;407:538-41.
- 22. Russell KS, Haynes MP, Sinha D, Clerisme E, Bender JR. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc Natl Acad Sci USA 2000;97:5930-5.
- Shigematsu K, Koyama H, Olson NE, Cho A, Reidy MA. Phosphatidylinositol 3-kinase signaling is important for smooth muscle cell replication after arterial injury. Vasc Biol 2000;20:2373-8.
- Falkenstein E. Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharmacol Rev 2000;52:513-56.
- 25. Cantrell DA. Phosphoinositide 3-kinase signaling pathways. J Cell Sci 2001;114:1439-45.
- Farese RV. Insulin-sensitive phospholipid signaling systems and glucose transport. Exp Biol Med 2001;226:283-95.
- 27. Vanhaesebroeck B, Waterfield MD. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res

1999;253:239-54.

- Rameh LE, Cantley LC. The role of phosphoinositide 3kinase lipid products in cell function. J Biol Chem 1999; 274:8347-50.
- 29. Cohen P, Alessi DR, Cross DAE. PDK1, one of the missing links in insulin signal transduction? FEBS Letters. 1997;410:3-10.
- Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999;399:597-601.
- 31. Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, Figeys D, Harrison DG, Berk BC, Aebersold R, Corson MA. Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 1999;274:30101-8.
- 32. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999;399:601-5.
- 33. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997;100:3131-9.
- Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. J Clin Invest 1996;98: 894-8.
- Saward L, Zahradka P. Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 1997;81:249-57.
- 36. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999; 274:22699-704.
- 37. Nishimatsu H, Suzuki E, Nagata D, Moriyama N, Satonaka H, Walsh K, Saata M, Kangawa K, Matsuo H, Goto A, Kitamura T, Hirata Y. Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res 2001;89:63-70.
- Miller VM. Gender and vascular reactivity. Lupus. 1999;8:409-15.
- Selzman CH, Whitehill TA, Shames BD, Pulido EJ, Cain BC, Harken AH. The biology of estrogen-mediated repair of cardiovascular injury. Ann Thorac Surg 1998;65:868-74.
- 40. Nadal A, Ropero AB, Fuentes E, Soria B. The plasma membrane estrogen receptor: nuclear or unclear? Trends Pharmacol Sci 2001;22:597-9.
- 41. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996;93:

5925-30.

- 42. Kuiper GG. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997;138:863-70.
- Paech K. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 1997;277: 1508-10.
- 44. Lindner V. Increased expression of estrogen receptor-beta mRNA in male blood vessels after vascular injury. Circ Res 1998;83:224-9.
- Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation 1994;89:1943-50.
- 46. Iafrati MD, Karas RH, Aronovitz M, Kim S, Sullivan TR, Lubahn DB, O'Donnell TF, Korach KS, Mendelsohn ME. Estrogen inhibits the vascular injury response in estrogen receptor α-deficient mice. Nature Medicine 1997;3:545-8.
- 47. Karas RH, Schulten H, Pare G, Aronovitz MJ, Ohlsson C, Gustafsson JA, Mendelsohn ME. Effects of estrogen on the vascular injury response in estrogen receptor α,β (Double) knockout mice. Circ Res 2001;89:534-9.
- 48. Zhu Y, Bian Z, Lu P, Karas RH, Bao L, Cox D, Hodgin J, Shaul PW, Thoren, Smithies O, Gustafsson JA, Mendelsohn ME. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science 2002;295:505-8.
- 49. Darblade B, Pendaries C, Krust A, Dupont S, Fouque MJ, Rami J, Chambon P, Bayard F, Arnal JF. Estradiol alters nitric oxide production in the mouse aorta through the α-, but not β-, estrogen receptor. Circ Res 2002;90:413-9.
- 50. Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Coller ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff MI, Fleischer S. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 2002;416:334-7.
- 51. Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O and Maeda N. Estrogen receptor α is a major mediator

of 17β -estradiol's atheroprotective effects on lesion size in apoe-/- mice. J Clin Invest 2001;107:333-40.

- 52. Barrett-Connor E. Sex differences in coronary heart disease. Circulation 1997;95:252-64.
- Barrett-Connor E, Grady D. Hormone replacement therapy, heart disease, and other considerations. Annu Rev Public Health 1998;19:55-72.
- 54. Grodstein F, Manson JE, Colditz GA, Willett WC, Speizer FE, Stampfer MJ. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann Intern Med 2000;133:933-41.
- 55. Manson JE, Martin KA. Postmenopausal hormonereplacement therapy. New Engl J Med 2001;345:34-40.
- 56. Mosca L, Collins P, Herrington DM, Mendelsohn ME, Pasternak RC, Robertson RM, Schenck-Gustafsson K, Smith SC, Taubert KA, Wenger NK. Hormone replacement therapy and cardiovascular disease. Circulation 2001;104:499-507.
- 57. Razandi M, Pedram A and Levin ER. Estrogen signals to the preservation of endothelial cell form and function. J Biol Chem. 2000;275:38540-6.
- 58. Caulin-Glaser T, Garcia-Cardena G, Sarrel P, Sessa WC, Bender JR. 17β-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca²⁺ mobilization. Circ Res 1997;81:885-92.
- Al-Mehdi AB, Song C, Tozawa K, Fisher AB. Ca2⁺- and phosphatidylinositol 3-kinase-dependent nitric oxide generation in lung endothelial cells in situ with ischemia. J Biol Chem. 2000;275:39807-10.
- Igarashi J and Michel T. Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase β. J Biol Chem. 2001;276:36281-8.
- 61. Fraser H, Davidge ST, Clanachan AS. Activation of Ca^{2*} independent nitric oxide synthase by 17β -estradiol in post-ischemic rat heart. Cardiovascular Res 2000;46:111-8.

雌激素引發受體依賴性但非基因體依賴性之血管保護作用

樓迎統

雌激素可以經由受體媒介,但係非基因體依賴性的快速作用引起很多興趣。雖然雌激素 受體本質仍不清楚,快速作用可以被受體拮抗劑抑制,也可以被不能通過細胞膜之雌激素型 劑模倣。因為內皮膜產生一氧化氮 (NO) 是重要調控心血管的機制,雌激素保護心血管的機轉 中也以增加NO生產為主要管道。在活體或體外實驗中,不少證據顯示雌激素活化內皮NO合 成酶 (eNOS) 刺激NO產生。近來研究更發現雌激素經快速活化磷脂激酶 (PI3-K) 訊息傳遞系 統,刺激內皮NO合成。這些觀察代表在血管細胞中雌激素快速且經受體媒介(但非轉錄依賴 性)的作用可能參與保護心血管。本文回顧最近的相關證據並討論血管雌激素受體之生理意 義。(長庚醫誌 2002;25:636-44)

關鍵字:雌激素,一氧化氮,雌激素受體,内皮一氧化氮合成,磷脂激酶,血管功能。

′ · | ¥″†z ·″[^~†z ·< $\alpha / 0$; $\alpha = 91 f - 5 / 2 / 0$ $\alpha = 91 f - 8 / 2 / 0$ · · | 259 "C Tel.: (03)3283016, fl`æe' flæv#B;G.. " t, ----´;C"ł' /j ' ¥"tz '"[~tz '< ;Cfi 90;/ 333 t/sm/ /~/@, ext. 5095; Fax: (03)3283031; E-mail: ytlau@mail.cgu.edu.tw

"ł'/i'